Static Density Functional Theory: An Overview




compare ground-state densities p(r) resulting from different
external potentials v(r).
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QUESTION: Are the ground-state densities coming from
different potentials always different?
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Hohenberg-Kohn-Theorem (1964)

G: v(r) — p (r) 1isinvertible




Proof

Step 1: Invertibility of map A

Solve many-body Schrodinger equation for the external potential:

V(r. )= I .. (..., )+ constant

This 1s manifestly the inverse map: A given W uniquely yields the
external potential.



Step 2: Invertibility of map A

Given: two (nondegenerate) ground states W, W’ satisfying
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HY = EW , H=T+W+V
A with o
H'W¥'=E'Y' H=T+W+V'

tobe shown: ¥ =¥' = p#p'

® P=p
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cannot happen




Use Rayleigh-Ritz principle:

¢ E=<‘P

A w) < (wiw) = (wHs V- viw)

Jf' rp (r)[v(r)—v (r)]

=E'+

@ E=<‘P‘H“P><<‘P‘H‘\P>

=E +fd3rp(r)[v'(r)—v(r)]

Reductio ad absurdum:
Assumptionp=p’. Add®and ©= E+E <E+FE’ %




Consequence

Every quantum mechanical observable 1s completely
determined by the ground state density.
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Proof: P G~ >V[ p] solve S.E. >[(I)]

observables B: B. [p] = <CI)i [p] B

D, [p]>



What is a FUNCTIONAL?

Elp]

functional

set of functions set of real numbers

Generalization:

V. [p] =V [p ](f ) functional depending parametrically on T

o pl-w[pXEs) oron (1.8)



QUESTION:

How to calculate ground state density p, (f) of a given system
(characterized by external potential V, = Y v, (¥) )
without recourse to the Schrodinger Equation?

Theorem:

There exists a density functional Ey[p] with properties
) Eyclpl>E, for p=p,
i) Eyglp,l = E,

where E = exact ground state energy of the system

)
Thus, Euler equation ——— B¢ [p]= 0

3p(r)

yields exact ground state density p,,.




proof:

formal construction of E«[p] :

for arbitrary ground state density P (f) A l}[ él

define: | E [p]E <‘P [p] qj[p]>

T+W+V,

>E, for p=p,
=E, for p=p, q.e.d.

E [p]=fd3fp(1’)Vo (r)+ <‘P[p] T+Ww[p >
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Flp] is “ universal “




HOHENBERG-KOHN THEOREM

1. v@r) = p@)

one-to-one correspondence between external potentials v(r) and ground-state
densities p(r)

2. Variational principle

Given a particular system characterized by the external potential v (r). Then the
solution of the Euler-Lagrange equation

0
WEHK [p]=0

yields the exact ground-state energy K, and ground-state density p,(r) of this
system

3. Ew|p]= F[p]+fp (r)v, (r)d’r

F[p] is UNIVERSAL. In practice, F[p] needs to be approximated




Expansion of F[p] in powers of e

Flp]=FO[p]+ e2FO[p] + e*F[p] + -

where: FO[p] =T, [p] (kinetic energy of non-interacting particles)

e’FU) [p] = 622 J’p (r)p (r ') d’rd’r'+ E, [p] (Hartree + exchange energies)
r—r'

2 (62 )1 FO) [p]= E, [p] (correlation energy)

e’ p(r)p(r)

3 3.1
> ‘r—r' drdr+EX[p]+Ec[p]

= F[p] =T, [p]+




By construction, the HK mapping is well-defined for all those functions p(r)
that are ground-state densities of some potential (so called V-representable
functions p(r)).

QUESTION: Are all “reasonable” functions p(r) V-representable?

V-representability theorem (Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985))

On a lattice (finite or infinite), any normalizable positive function p(r), that
is compatible with the Pauli principle, is (both interacting and non-
interacting) ensemble-V-representable.

In other words: For any given p(r) (normalizable, positive, compatible with
Pauli principle) there exists a potential, v [p](r), yielding p(r) as interacting
ground-state density, and there exists another potential, v [p](r), yielding
p(r) as non-interacting ground-state density.

In the worst case, the potential has degenerate ground states such that the
given p(r) is representable as a linear combination of the degenerate
ground-state densities (ensemble-V-representable).




HK 1-1 mapping for HK 1-1 mapping for
interacting particles non-interacting particles

v [r) ) ———— p(r) ————vp[ ()

Kohn-Sham Theorem

Let p (r) be the ground-state density of interacting electrons moving in the external
potential v (r). Then there exists a local potential v, (r) such that non-interacting
particles exposed to v (r) have the ground-state density p,(r), i.e.

—V—2+Vs,0 r) (pj(r)=ej (pj(r)’ p, (r)= i ‘cpj(r){z

2 j (with

lowestEj)
proot: v, fr) v, [, ()

Uniqueness follows from HK 1-1 mapping

Existence follows from V-representability theorem



Define v _[p](r) by the equation

CEQERE Pi P gre of §()

v,Ipl and v [p] are well
VR [ l‘]( ) defined through HK.

KS equations
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v, (r)

ﬁxed
to be solved selfconsistently with (l‘) E ‘(p j (l’){

Note: The KS equations do not follow from the variational principle.
They follow from the HK 1-1 mapping and the V-representability
theorem.



Variational principle gives an additional property of v_:

where Ep [ =p | |- ;fp(r)p(g)rd%' "T-p] ]

‘r-r'

Consequence:
Approximations can be constructed either for E_ [p] or
directly for v_J[o](r).
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