TDCDFT: Linear-response regime

Carsten A. Ullrich
University of Missouri

Benasque, January 2010
Overview

Lecture I: Basic formalism of TDCDFT

Lecture II: Applications of TDCDFT in linear response
 ► Polarizabilities in polymers
 ► Nanoscale transport, stopping power of metals
 ► Linewidths of collective excitations
 ► Excitations in atoms and molecules
 ► Optical properties of bulk metals and insulators
 ► Spin Coulomb drag

Lecture III: TDCDFT in the nonlinear regime
Motivation for TDCDFT

- TDCDFT overcomes several formal limitations of TDDFT:
 - allows treatment of electromagnetic waves, vector potentials, uniform applied electric fields.
 - works for all extended systems. One does not need the condition that the current density vanishes at infinity.

- But TDCDFT is also practically useful in situations that could, in principle, be fully described with TDDFT:
 - Upgrading to the current density can be a more “natural” way to describe dynamical systems.
 - Helps to deal with the ultranonlocality problem of TDDFT
 - Provides ways to construct nonadiabatic approximations
TDCDFT beyond the ALDA: the VK functional

\[A_{xc,1}(r, \omega) = A_{xc,1}^{ALDA}(r, \omega) - \frac{C}{i \omega n_0(r)} \nabla \cdot \vec{\sigma}_{xc}(r, \omega) \]

\[\sigma_{xc,jk} = \tilde{\eta}_{xc} \left(\nabla_j v_{1,k} + \nabla_k v_{1,j} - \frac{2}{3} \nabla \cdot v_1 \delta_{jk} \right) + \zeta_{xc} \nabla \cdot v_1 \delta_{jk} \]

\[v(r, \omega) = j(r, \omega) / n_0(r) \quad \text{velocity field} \]

\[\tilde{\eta}_{xc}(n, \omega) = -\frac{n^2}{i \omega} f_{xc}^T(n, \omega) \]

\[\zeta_{xc}(n, \omega) = -\frac{n^2}{i \omega} \left(f_{xc}^L(n, \omega) - \frac{4}{3} f_{xc}^T(n, \omega) - \frac{d^2 e_{xc}^{unif}}{dn^2} \right) \]
xc kernels of the homogeneous electron gas

\[\text{Im} f_{xc}^L \quad r_s=3 \]

\[\text{Re} f_{xc}^L \quad r_s=3 \]

\[\text{Im} f_{xc}^T \quad r_s=3 \]

\[\text{Re} f_{xc}^T \quad r_s=3 \]

QV: X. Qian and G. Vignale, PRB 65, 235121 (2002)
Static limits of the xc kernels

The shear modulus of the electron liquid does not disappear for $\omega \rightarrow 0$, as long as the limit $q \rightarrow 0$ is taken first.

which is what one should do for a local approximation.

\[
\begin{align*}
 f_{xc}^L (0) &= \frac{d^2 e_{xc}^{unif} (n)}{dn^2} + \frac{4}{3} \frac{S_{xc} (0)}{n^2} \\
 f_{xc}^T (0) &= \frac{S_{xc} (0)}{n^2}
\end{align*}
\]
Applications of the VK functional

(A) In the (quasi)-static $\omega \to 0$ limit:

- Polarizabilities of π-conjugated polymers
- Nanoscale transport
- Stopping power of slow ions in metals

These applications profit from the fact that VK does not reduce to the ALDA in the static limit.

(B) To describe excitations at finite frequencies:

- Atomic and molecular excitation energies
- Plasmon excitations in doped semiconductor structures
- Optical properties of bulk metals and insulators

Here the picture is less clear. Some situations are well described, others fail. We’ll try to analyze when and why.
TDCDFT for \(\pi \)-conjugated polymers

ALDA overestimates polarizabilities of long molecular chains. The long-range VK functional produces a counteracting field, due to the finite shear modulus at \(\omega \to 0 \).

Other long-chain molecules

VK works extremely well for π-conjugated polymers, but not so well for other types of long-chain molecules.

H-chain: localized σ-bonds dominate, and we probe density regions with $r_s < 1$ → XC viscosities not well known in these regions!

Nanoscale transport

Simple approach: two-terminal Landauer formula:

\[I = \frac{2}{\pi} \int_{-\infty}^{\infty} dE \ T(E) \left[f_L(E) - f_R(E) \right] \]

Transmission coefficient, usually obtained from DFT-nonequilibrium Green’s function; often gives quite wrong results – need TDDFT!
Nanoscale transport in the weak-bias regime

Current response:
\[
\vec{j}(\vec{r}, \omega) = \int d^3 r' \ \vec{\sigma}_0(\vec{r}, \vec{r}', \omega) \vec{E}_{\text{eff}}(\vec{r}', \omega)
\]

\[
\delta I(\omega \to 0) = \frac{T_0(\epsilon_F)}{\pi} \int d^3 r' \left[\delta E_{\text{ext}}(\omega) + \delta E_H(\vec{r}', \omega) + \delta E_{xc}(\vec{r}', \omega) \right]
\]

XC piece of voltage drop: shear viscosity

\[
R^{\text{dyn}} = \frac{4}{3e^2 A_c} \int \eta \frac{(\partial_z n)^2}{n^4} \, dz
\]

dynamical resistance: \(~10\% \) correction

Stopping power of electron liquids

Nazarov, Pitarke, Takada, Vignale, and Chang, PRB 76, 205103 (2007)

- Stopping power measures friction experienced by a slow ion moving in a metal due to interaction with conduction electrons
- ALDA underestimates friction (only single-particle excitations)
- TDCDFT gives better agreement with experiment: additional contribution due to viscosity

\[Q = Q_{\text{single particle}} + Q_{xc} \]

\[Q_{xc} = -\iint [\nabla n_0(r) \cdot \hat{v}] [\nabla' n_0(r') \cdot \hat{v}] \]

\[\times \frac{\partial \text{Im} f_{xc}(r,r',\omega)}{\partial \omega} \bigg|_{\omega=0} \ d^3r d^3r' \]
Excitations in finite and extended systems

\[\chi(\mathbf{r}, \mathbf{r}', \omega) = \lim_{\eta \to 0^+} \left[\sum_j \frac{\langle \Psi_0 | \hat{n}(\mathbf{r}) | \Psi_j \rangle \langle \Psi_j | \hat{n}(\mathbf{r}') | \Psi_0 \rangle}{\omega - E_j + E_0 + i\eta} \right] + c.c.(\omega \to -\omega) \]

\[\Omega_j \]

The full many-body response function has poles at the exact excitation energies.

- Discrete single-particle excitations merge into a continuum (branch cut in frequency plane)
- New types of collective excitations appear off the real axis (finite lifetimes)
Excitation spectrum of simple metals:

- single particle-hole continuum (incoherent)
- collective plasmon mode
- RPA/ALDA misses plasmon damping (multiple e-h excitations)

Optical excitations of insulators:

- interband transitions
- excitons (bound electron-hole pairs)
Electronic transitions in doped quantum wells

Interband transitions:
of order eV
(visible to near-IR)

Intersubband transitions:
of order meV
(mid- to far-IR)

10 meV = 2.4 THz

C.A. Ullrich, TDDFT book, Chapter 18
Quantum well subbands

Electrons in a quantum well:
- quantized in z-direction (discrete subbands)
- free in the x-y plane (each subband is parabolic)

\[
E_{j\parallel} = \frac{\hbar^2 q_{\parallel}^2}{2m^*} + \varepsilon_j
\]
Single-particle and collective excitations

Intersubband charge and spin plasmons: ↑ and ↓ densities in and out of phase
TDCDFT for intersubband plasmons

Since this is a “1D” system, we can integrate the continuity equation:

\[
\frac{\partial j_1}{\partial z} = i\omega n_1 \quad \Rightarrow \quad j_1(z, \omega) = i\omega \int_{-\infty}^{z} n_1(z', \omega) dz'
\]

and we can construct the xc scalar potential from the xc vector potential:

\[
\frac{\partial V_{xc,1}}{\partial z} = i\omega A_{xc,1} \quad \Rightarrow \quad V_{xc,1}(z, \omega) = i\omega \int_{-\infty}^{z} A_{xc,1}(z', \omega) dz'
\]

We only need the zz component of the xc stress tensor:

\[
\sigma_{xc,zz}(z, \omega) = \left(\zeta_{xc} + \frac{4}{3} \eta_{xc} \right) \frac{\partial V(z, \omega)}{\partial z}
\]

where

\[
\zeta_{xc} + \frac{4}{3} \eta_{xc} = -\frac{n_0^2(z)}{i\omega} \left(f_{xc}^L(n, \omega) - \frac{d^2 e_{xc}^{\text{unif}}}{dn^2} \right)_{n=n_0(z)}
\]
Explicit expression for the scalar xc kernel in 1D

\[
f_{\text{xc}}^{VK} (z, z', \omega) = f_{\text{xc}}^{L} (z, \omega) \delta(z - z')
\]

\[
- f_{\text{xc}}^{\text{dyn}} (z, \omega) \frac{n'_0(z)}{n_0(z)} \theta(z - z') - f_{\text{xc}}^{\text{dyn}} (z', \omega) \frac{n'_0(z')}{n_0(z')} \theta(z' - z)
\]

\[
+ \int dz'' \theta(z'' - z) \theta(z'' - z') f_{\text{xc}}^{\text{dyn}} (z'', \omega) \left(\frac{n'_0(z'')}{n_0(z)} \right)^2
\]

- long-range nature of the xc kernel explicitly visible
- satisfies Harmonic Potential Theorem and other symmetries

G. Vignale and W. Kohn, in “Electronic DFT” (Plenum, 1998)

Exercise: derive this expression!
Frequencies and linewidths of ISB plasmons

C.A.U. and G. Vignale, PRL 87, 037402
Exp: J.B. Williams et al, PRL 87, 037401
The small-matrix approximation in TDDFT

\[
n_{1\sigma}(\mathbf{r}, \Omega) = \int d^3r' \chi^{KS}_{\sigma\sigma}(\mathbf{r}, \mathbf{r}', \Omega) \sum_{\sigma'} \int d^3r'' \left[\frac{1}{|\mathbf{r}' - \mathbf{r}''}| + f_{xc,\sigma'}(\mathbf{r}', \mathbf{r}'', \Omega) \right] n_{1\sigma'}(\mathbf{r}'', \Omega)
\]

Find those frequencies \(\Omega\) where there is a finite solution of the response equation without any external perturbation (eigenmodes of the system).

Consider only 2 levels:

\[
\chi^{KS}_{\sigma\sigma}(\mathbf{r}, \mathbf{r}', \omega) \approx \left[\frac{1}{\omega - \omega_{21}} - \frac{1}{\omega + \omega_{21}} \right] \varphi_1(\mathbf{r})\varphi_2(\mathbf{r})\varphi_1(\mathbf{r}')\varphi_2(\mathbf{r}')
\]

Define

\[
S_{\sigma\sigma'} = 2 \int d^3r \int d^3r' \left[\frac{1}{|\mathbf{r} - \mathbf{r}'|} + f_{xc,\sigma'}(\mathbf{r}, \mathbf{r}', \Omega) \right] \varphi_1(\mathbf{r})\varphi_2(\mathbf{r})\varphi_1(\mathbf{r}')\varphi_2(\mathbf{r}')
\]

\[
\Omega_{\pm}^2 = \omega_{21}^2 + 2 \omega_{21} \left(S_{\uparrow\uparrow} \pm S_{\uparrow\downarrow} \right)
\]

Exercise: derive this!

+ Charge-Density excitation / singlet excitation
- Spin-Density excitation / triplet excitation
Atomic excitation energies with TDCDFT

C.A. Ullrich and K. Burke, JCP 121, 28 (2004)

Velocity field of $1\rightarrow 2$ excitation:

$$\mathbf{v}^{12} = \frac{\varphi_1(r)\nabla \varphi_2(r) - \varphi_2(r)\nabla \varphi_1(r)}{n_0(r)}$$

Small-matrix approximation of TDCDFT with VK functional:

$$\Omega^2 = \Omega^2_{ALDA} - \frac{i\Omega}{\omega_{12}} \sum_{jk} \int d^3 r \sigma_{xc,jk}^{12}(\mathbf{r}, \Omega) \nabla_k \mathbf{v}_j^{12}(\mathbf{r})$$

compare with average rate of energy dissipation in a classic viscous fluid:

$$\dot{E}_{\text{diss}} = -\sum_{jk} \int d^3 r \sigma_{jk} \nabla_k \mathbf{v}_j$$

Atomic excitation energies

<table>
<thead>
<tr>
<th></th>
<th>Exp</th>
<th>bare KS</th>
<th>ALDA</th>
<th>VK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be 2s → 3s</td>
<td>6.78</td>
<td>5.56</td>
<td>5.62</td>
<td>5.67 − 0.04i</td>
</tr>
<tr>
<td>Mg 3s → 4s</td>
<td>5.39</td>
<td>4.72</td>
<td>4.78</td>
<td>4.83 − 0.05i</td>
</tr>
<tr>
<td>Ca 4s → 5s</td>
<td>4.13</td>
<td>3.77</td>
<td>3.81</td>
<td>3.87 − 0.06i</td>
</tr>
<tr>
<td>Sr 5s → 6s</td>
<td>3.79</td>
<td>3.50</td>
<td>3.54</td>
<td>3.59 − 0.06i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Exp</th>
<th>bare KS</th>
<th>ALDA</th>
<th>VK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be 2s → 2p</td>
<td>5.28</td>
<td>3.50</td>
<td>5.08</td>
<td>6.24 − 0.69i</td>
</tr>
<tr>
<td>Mg 3s → 3p</td>
<td>4.35</td>
<td>3.39</td>
<td>4.57</td>
<td>4.86 − 0.09i</td>
</tr>
<tr>
<td>Ca 4s → 4p</td>
<td>2.93</td>
<td>2.39</td>
<td>3.38</td>
<td>3.22 − 0.06i</td>
</tr>
<tr>
<td>Sr 5s → 5p</td>
<td>2.69</td>
<td>2.22</td>
<td>3.11</td>
<td>−1.63 − 0.06i</td>
</tr>
</tbody>
</table>

C.A.Ullrich and K. Burke, JCP 121, 28 (2004)
Analysis of the VK functional for atoms

conditions for validity of the VK functional:

\[
\left| \frac{\nabla n_0}{n_0}, \frac{\nabla j_v}{j_v}, \frac{\nabla v_v}{v_v} \right| \ll \frac{k_F}{v_F}, \frac{\omega}{v_F}
\]

OK for \(s \rightarrow s\), but badly violated for \(s \rightarrow p\)!
Analysis of the VK functional for atoms

► Frequency shifts:

- Generally in the right direction; but only small for $s \rightarrow s$, and tend to overshoot for $s \rightarrow p$ excitations
- need more accurate $f_{xc}^{L,T}(\omega)$, especially around nucleus ($r_s << 1$)
- excitations with large ∇j are problematic. Need higher gradients. [partial cure: Tao and Vignale, PRL 97, 036403 (2006)]

► Imaginary parts:

- small but finite, often of the same order as frequency shifts.

- unphysical: a finite system ought to have zero linewidth. Difficult to achieve for a functional with the homogeneous electron gas as reference system!
TDCDFT for bulk semiconductors

Berger, de Boeij, and van Leeuwen, PRB 75, 035116 (2007)

- if shear modulus is ignored (CNT,QVA), marginal improvement over ALDA.
- including transverse shear modulus (QV), spectrum collapses.
- like in atoms, the inhomogeneity is too large; VK conditions violated.
- usage of VK for insulators questionable, but can perhaps be improved.

CNT: Conti, Nifosi, Tosi
QV: Qian, Vignale

Experiment:
Lautenschlager, Garriga, Vina and Cardona, PRB 36, 4821 (1987)
• cures deficiencies of ALDA (low-frequency Drude-like tail of spectrum)
• again, the transverse shear modulus causes trouble. Results are better if it is neglected. However, this might be fixed if we had better expressions for the shear modulus.
The VK functional: summary and words of caution

► Relies on a “double-LDA”: both the ground-state density and external perturbation are assumed to be slowly varying. In practice, these conditions are often violated, which can be a source of serious problems!

► Depends crucially on order of limits: \(q \rightarrow 0 \) first, then \(\omega \rightarrow 0 \). Does therefore not reduce to ALDA in the \(\omega \rightarrow 0 \) limit, due to \(xc \) shear modulus of electron liquid which stays finite. The discontinuity in \(f_{xc} \) is a very subtle point, and sometimes seems to lead to unphysical results, depending on the system. How to take the static limits properly is still subject of research.

► VK is based on the electron gas, which is an infinite reference system. Therefore, excitation energies have an imaginary part. For finite systems, this is unphysical, but for extended systems, this is the correct physics.

► Required input for VK functional is only approximately known. Need more accurate expressions for \(f_{xc}^L(n, \omega), f_{xc}^T(n, \omega) \) especially at high densities.
Ultranonlocality in DFT: “upgrades”

▲ Band insulators:

\[f_{xc}(k, k, 0) \xrightarrow[k \to 0]{} \frac{\alpha}{k^2} \quad \Rightarrow \quad \text{Polarization DFT} \]

\[\text{Gonze, Ghosez, and Godby, PRL 74, 4035 (1995)} \]

▲ TDDFT:

\[f_{xc}(k, k', \omega) \xrightarrow[k \to 0]{} \alpha(\omega) \frac{k \cdot k'}{k^2} \quad \Rightarrow \quad \text{TDCDFT} \]

\[\text{Vignale and Kohn, PRL 77, 2037 (1996)} \]

▲ Spin-TDDFT:

\[f_{xc, \sigma\sigma'}^{\text{unif}}(k, \omega) \xrightarrow[k \to 0]{} \frac{A(\omega)}{k^2} \frac{\sigma\sigma' n^2}{4n_\sigma n_{\sigma'}} + B_{\sigma\sigma'}(\omega) \quad \Rightarrow \quad \text{TDSCDFT} \]

\[\text{Qian, Constantinescu, Vignale, PRL 90, 066402 (2003)} \]

Situation even worse: ultranonlocality appears in the homogeneous case!
Spin-dependent generalization of VK functional

Qian, Constantinescu, Vignale, PRL 90, 066402 (2003)

\[A_{xc,1\sigma}(\mathbf{r}, \omega) = A^{ALDA}_{xc,1\sigma}(\mathbf{r}, \omega) - \frac{1}{i\omega n_{\sigma}(\mathbf{r})} \sum_{\sigma'} \nabla \cdot \mathbf{\tilde{\sigma}}_{xc,\sigma\sigma'}(\mathbf{r}, \omega) + \frac{n_{\uparrow}(\mathbf{r})n_{\downarrow}(\mathbf{r})\rho_{\uparrow\downarrow}(\mathbf{r}, \omega)}{i\omega} \sum_{\sigma'} \frac{\sigma\sigma'}{n_{\sigma}(\mathbf{r})n_{\sigma'}(\mathbf{r})} \mathbf{j}_{\sigma'}(\mathbf{r}, \omega) \]

\[\rho_{\uparrow\downarrow}(\omega) \]

spin-transresistivity

- new term, depends on the velocities themselves
- disappears in the static limit \((\rho_{\uparrow\downarrow}\sim\omega)\)
- real part: spin mass
- imaginary part: spin Coulomb drag

- spin-dependent generalization of the xc viscoelastic stress tensor
- depends on velocity gradients
The spin Coulomb drag effect

- Injection of spin-current
- Spin-flip
- Coulomb scattering between spin-ups and spin-downs
- Friction btw spin ↑ and ↓

P_{tot} is conserved
$P_{\uparrow, \downarrow}$ are not conserved
Even in the purest material (no spin-flip), spin currents decay due to Coulomb interaction between different spin populations.

The spin Coulomb drag effect

SCD counteracts spin diffusion in opposite directions.

Spin-transresistivity \(\rho_{\uparrow\downarrow} \)

\[
D_s = D_{c0} \frac{\chi_0}{\chi_s} \frac{1}{1 + \left| \rho_{\uparrow\downarrow} \right|/\rho_{\text{Drude}}}
\]

spin diffusion constant

SCD in spin-dependent transport

- Counteracts spin diffusion
- Opposes spin injection (e.g. from FM metal into semiconductor)
- Spin transresistivity increases in the presence of Rashba SO coupling [Tse and Das Sarma, PRB 75, 045333 (2007)]
- SCD reduces skew-scattering component of spin-Hall conductivity [Hankiewicz and Vignale, PRB 73, 115339 (2006)]
- SCD shows up in Gilbert damping constant [Hankiewicz, Vignale, and Tserkovnyak, PRB 75, 174434 (2007)]

Picture from http://www.phy.cam.ac.uk/research/oe/nanospintronics.php
Intersubband plasmons in parabolic quantum wells

Kohn’s mode

Charge-density excitation
No damping through e-e interactions
(Harmonic potential theorem).

Spin-density excitation
Damping through SCD

- The SCD strongly affects the spin plasmons, not charge plasmons
- Can be measured by inelastic light scattering, comparing plasmon linewidths (differences will be of order 0.1-0.5 meV).

Today’s summary:

► The VK functional in TDCDFT works great for polarizabilities of polymers and linewidths of collective plasmon excitations.

► The situation is less clear for excitations in atoms and molecules and optical spectra of metals and insulators. These seem hard to capture with electron-gas based functionals.

► VK is promising, but needs improvements (e.g. local → semilocal).

► For spin-dependent dynamics, TDSCDFT leads to the spin Coulomb drag effect, which is of interest in the field of spintronics.

Tomorrow:

● Dynamics in the time domain: memory and dissipation in TDKS

● A rigorous extension of the LDA: TDDefFT versus TDCDFT

● Time-dependent optimized effective potential