Electronic properties of materials for thin-film solar cells

Silvana Botti

1 LSI, École Polytechnique-CNRS-CEA, Palaiseau, France
2 LPMCN, CNRS-Université Lyon 1, France
3 European Theoretical Spectroscopy Facility

January 11, 2010 – TDDFT, Benasque
Collaborators

Ecole Polytechnique
Julien Vidal, Lucia Reining

Université Lyon 1
Fabio Trani, Miguel Marques

EDF Paris
Pär Olsson, J.-F. Guillemoles

CEA Saclay
Fabien Bruneval

Electronic excitations in solar cells
Outline

1. Thin-film photovoltaic materials
2. What can we calculate within standard DFT?
3. How to go beyond standard DFT? GW vs. Hybrids
4. How to compare with experiments for “real” materials?
Outline

1. Thin-film photovoltaic materials
2. What can we calculate within standard DFT?
3. How to go beyond standard DFT? GW vs. Hybrids
4. How to compare with experiments for “real” materials?
Thin-film photovoltaic materials

Present state of photovoltaic efficiency

Best Research-Cell Efficiencies

- Multijunction Concentrators
 - Three-junction (2-terminal, monolithic)
 - Two-junction (2-terminal, monolithic)
- Single-Junction GaAs
 - Single crystal
 - Concentrator
 - Thin film
- Crystalline Si Cells
 - Single crystal
 - Multicrystalline
 - Thick Si film
- Thin-Film Technologies
 - Cu(In,Ga)Se_2
 - CdTe
 - Amorphous Si:H (stabilized)
 - Nano-, micro-, poly-Si
 - Multijunction polycrystalline
- Emerging PV
 - Dye-sensitized cells
 - Organic cells (various technologies)

from National Renewable Energy Laboratory (USA)
CIGS solar cell

Devices have to fulfill 2 functions:

- Photogeneration of electron-hole pairs
- Separation of charge carriers to generate a current

Structure:

- Molybdenum back contact
- CIGS layer (p-type layer)
- CdS layer (n-type layer)
- ZnO:Al TCO contact

Efficiency = 13%
Objectives

- Predict accurate values for fundamental opto-electronical properties (gap, absorption spectra, excitons, ...)
- Simulate real materials (large unit cells, defects, doping, interfaces, ...)

Silvana Botti
Electronic excitations in solar cells
Outline

1. Thin-film photovoltaic materials
2. What can we calculate within standard DFT?
3. How to go beyond standard DFT? GW vs. Hybrids
4. How to compare with experiments for “real” materials?
What can we calculate within standard DFT?

Density functional theory

DFT in its standard form is a **ground state theory**:

- **Structural parameters**: lattice parameters, internal distortions are usually good in LDA or GGA
- Formation energies for defects calculated from total energies are often reliable

... but ...

- Kohn-Sham energies are not meant to reproduce quasiparticle band structures: one often obtains good band dispersions but band gaps are systematically underestimated
- Kohn-Sham DOS is not meant to reproduce photoemission
- How to calculate the optical absorption?
What can we calculate within standard DFT?

Density functional theory

DFT in its standard form is a **ground state theory**:

- **Structural parameters**: lattice parameters, internal distortions are usually good in LDA or GGA
- **Formation energies** for defects calculated from total energies are often reliable

... but ...

- Kohn-Sham energies are not meant to reproduce quasiparticle band structures: one often obtains good band dispersions but band gaps are systematically underestimated
- Kohn-Sham DOS is not meant to reproduce photoemission
- How to calculate the optical absorption?
DFT in its standard form is a ground state theory:

- **Structural parameters**: lattice parameters, internal distortions are usually good in LDA or GGA
- **Formation energies** for defects calculated from total energies are often reliable

... but ...

- Kohn-Sham energies are not meant to reproduce quasiparticle band structures: one often obtains good band dispersions but band gaps are systematically underestimated
- Kohn-Sham DOS is not meant to reproduce photoemission

How to calculate the optical absorption?
DFT in its standard form is a ground state theory:

- **Structural parameters**: lattice parameters, internal distortions are usually good in LDA or GGA
- **Formation energies** for defects calculated from total energies are often reliable

... but ...

- Kohn-Sham energies are not meant to reproduce quasiparticle band structures: one often obtains good band dispersions but band gaps are systematically underestimated
- Kohn-Sham DOS is not meant to reproduce photoemission
- How to calculate the optical absorption?
What can we calculate within standard DFT?

Density functional theory

DFT in its standard form is a **ground state theory**:

- **Structural parameters**: lattice parameters, internal distortions are usually good in LDA or GGA
- **Formation energies** for defects calculated from total energies are often reliable

... but ...

- Kohn-Sham energies are not meant to reproduce **quasiparticle band structures**: one often obtains good **band dispersions** but **band gaps** are systematically underestimated
- Kohn-Sham DOS is not meant to reproduce **photoemission**
- How to calculate the **optical absorption**?
What can we calculate within standard DFT?

Excitation energies: photoemission

Photoemission process:

\[h\nu - (E_{\text{kin}} + \phi) = E_{N-1,\nu} - E_{N,0} = -\varepsilon_{\nu} \]
What can we calculate within standard DFT?

Excitation energies: photoemission

Inverse photoemission process:

\[h\nu - (E_{\text{kin}} + \phi) = E_{N,0} - E_{N+1,c} = -\varepsilon_c \]
What can we calculate within standard DFT?

Excitation energies: energy gap

Photoemission gap:

\[E_{\text{gap}} = I - A = \min_{k,l} \left(E_{N-1,k} + E_{N+1,l} - 2E_{N,0} \right) \]
What can we calculate within standard DFT?

Excitation energies: energy gap

Optical gap:

\[E_{\text{gap}} = I - A - E_{\text{exc}}^{\text{binding}} \]
What can we calculate within standard DFT?

LDA Kohn-Sham energy gaps for CIS

<table>
<thead>
<tr>
<th>Material</th>
<th>DFT-LDA</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuInS$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_g</td>
<td>-0.11</td>
<td>1.54</td>
</tr>
<tr>
<td>In-S</td>
<td>6.5</td>
<td>6.9</td>
</tr>
<tr>
<td>S s band</td>
<td>12.4</td>
<td>12.0</td>
</tr>
<tr>
<td>In 4 d band</td>
<td>14.6</td>
<td>18.2</td>
</tr>
<tr>
<td>CuInSe$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_g</td>
<td>-0.29</td>
<td>1.05</td>
</tr>
<tr>
<td>In-Se</td>
<td>5.8</td>
<td>6.5</td>
</tr>
<tr>
<td>Se s band</td>
<td>12.6</td>
<td>13.0</td>
</tr>
<tr>
<td>In 4 d band</td>
<td>14.7</td>
<td>18.0</td>
</tr>
</tbody>
</table>

www.abinit.org
Outline

1. Thin-film photovoltaic materials

2. What can we calculate within standard DFT?

3. How to go beyond standard DFT? GW vs. Hybrids

4. How to compare with experiments for “real” materials?
In the many-body framework, we know how to solve these problems:

- **GW** for quasi-particle properties
- **Bethe-Salpeter equation** for the inclusion of electron-hole interaction
Hedin’s equations

\[\Sigma = G \Gamma \]
\[G = G^0 + G^0 \Sigma G \]
\[W = v + vP \]
\[P = GG \Gamma \]

Hedin’s equations

\[\Sigma = G W \Gamma \]

\[G = G_0 + G_0 \Sigma G \]

\[W = v + v P W \]

\[P = G G \]

\[\Gamma = 1 + (\delta \Sigma / \delta G) G G \]

\[P = G G \Gamma \]

How to go beyond standard DFT? GW vs. Hybrids

Standard one-shot GW

Kohn-Sham equation:

\[H_0(r)\varphi_{KS}(r) + v_{xc}(r)\varphi_{KS}(r) = \varepsilon_{KS}\varphi_{KS}(r) \]

Quasiparticle equation:

\[H_0(r)\phi_{QP}(r) + \int dr'\Sigma(r, r', \omega = E_{QP})\phi_{QP}(r') = E_{QP}\phi_{QP}(r) \]

Quasiparticle energies 1st order perturbative correction with \(\Sigma = iGW \):

\[E_{QP} - \varepsilon_{KS} = \langle \varphi_{KS}|\Sigma - v_{xc}|\varphi_{KS}\rangle \]

Basic assumption: \(\phi_{QP} \simeq \varphi_{KS} \)

Hybersten and Louie, PRB 34 (1986); Godby, Schlüter and Sham, PRB 37 (1988)
Standard one-shot GW

Kohn-Sham equation:

\[H_0(r) \varphi_{KS}(r) + v_{xc}(r) \varphi_{KS}(r) = \varepsilon_{KS} \varphi_{KS}(r) \]

Quasiparticle equation:

\[H_0(r) \phi_{QP}(r) + \int dr' \Sigma(r, r', \omega = E_{QP}) \phi_{QP}(r') = E_{QP} \phi_{QP}(r) \]

Quasiparticle energies 1st order perturbative correction with \(\Sigma = iGW \):

\[E_{QP} - \varepsilon_{KS} = \langle \varphi_{KS} | \Sigma - v_{xc} | \varphi_{KS} \rangle \]

Basic assumption: \(\phi_{QP} \approx \varphi_{KS} \)

Hybersten and Louie, PRB 34 (1986); Godby, Schlüter and Sham, PRB 37 (1988)
How to go beyond standard DFT? GW vs. Hybrids

Quasiparticle energies within \(G_0W_0 \) for CIS

<table>
<thead>
<tr>
<th></th>
<th>CuInS(_2)</th>
<th>CuInSe(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DFT-LDA</td>
<td>(G_0W_0)</td>
</tr>
<tr>
<td>(E_g)</td>
<td>-0.11</td>
<td>0.28</td>
</tr>
<tr>
<td>In-S</td>
<td>6.5</td>
<td>6.9</td>
</tr>
<tr>
<td>S s band</td>
<td>12.4</td>
<td>13.0</td>
</tr>
<tr>
<td>In 4 d band</td>
<td>14.6</td>
<td>16.4</td>
</tr>
</tbody>
</table>

www.abinit.org
Looking for another starting point:

- DFT with another approximation for v_{xc}: GGA, EXX,... (e.g. Rinke et al. 2005)
- LDA/GGA + U (e.g. Kioupakis et al. 2008, Jiang et al. 2009)
- Hybrid functionals (e.g. Fuchs et al. 2007)

Self-consistent approaches:

- GWscQP scheme (Faleev et al. 2004)
- scCOHSEX scheme (Hedin 1965, Bruneval et al. 2005)
Looking for another starting point:

- DFT with another approximation for v_{xc}: GGA, EXX,... (e.g. Rinke et al. 2005)
- LDA/GGA + U (e.g. Kioupakis et al. 2008, Jiang et al. 2009)
- Hybrid functionals (e.g. Fuchs et al. 2007)

Self-consistent approaches:

- GWscQP scheme (Faleev et al. 2004)
- scCOHSEX scheme (Hedin 1965, Bruneval et al. 2005)
In both sc approaches the self-energy is made **hermitian** and **static**

Advantages of sc-COHSEX

- physically motivated: accounts for Coulomb-hole and screened-exchange
- computationally friendly: only occupied states
- sc-COHSEX wave-functions very similar to GWscQP ones
- still a “best G, best W” approach
- dynamical correlations added in the G$_0$W$_0$ step

In both sc approaches the self-energy is made *hermitian* and *static*

Advantages of sc-COHSEX

- physically motivated: accounts for Coulomb-hole and screened-exchange
- computationally friendly: only occupied states
- sc-COHSEX wave-functions very similar to GWscQP ones
- still a “best G, best W” approach
- dynamical correlations added in the G_0W_0 step

Quasiparticle energies within sc-GW for CIS

<table>
<thead>
<tr>
<th></th>
<th>CuInS₂</th>
<th>CuInSe₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DFT-LDA</td>
<td>G₀W₀</td>
</tr>
<tr>
<td>Eg</td>
<td>-0.11</td>
<td>0.28</td>
</tr>
<tr>
<td>In-S</td>
<td>6.5</td>
<td>6.9</td>
</tr>
<tr>
<td>S s band</td>
<td>12.4</td>
<td>13.0</td>
</tr>
<tr>
<td>In 4 d band</td>
<td>14.6</td>
<td>16.4</td>
</tr>
</tbody>
</table>

sc-GW is here sc-COHSEX+G₀W₀
How to compare with experiments for “real” materials?

Outline

1. Thin-film photovoltaic materials
2. What can we calculate within standard DFT?
3. How to go beyond standard DFT? GW vs. Hybrids
4. How to compare with experiments for “real” materials?
Cu(In,Ga)(S,Se)$_2$ are among the best absorbers:

- high optical absorption \Rightarrow thin-layer films
- optimal photovoltaic gap (record efficiency 19.9 %)
- self-doping with native defects \Rightarrow p-n junctions
- extraordinary stability under operating conditions:
 - tolerance to large off-stoichiometries, stress, defects (not yet understood)
CIGS properties

Cu(In,Ga)(S,Se)$_2$ are among the best absorbers:

- high optical absorption \Rightarrow thin-layer films
- optimal photovoltaic gap (record efficiency 19.9 %)
- self-doping with native defects \Rightarrow p-n junctions
- extraordinary stability under operating conditions: tolerance to large off-stoichiometries, stress, defects (not yet understood)
CIGS properties

Cu(In,Ga)(S,Se)$_2$ are among the best absorbers:

- high optical absorption \Rightarrow thin-layer films
- optimal photovoltaic gap (record efficiency 19.9 %)
- self-doping with native defects \Rightarrow p-n junctions
- extraordinary stability under operating conditions: tolerance to large off-stoichiometries, stress, defects (not yet understood)
Cu(In,Ga)(S,Se)$_2$ are among the best absorbers:

- high optical absorption \Rightarrow thin-layer films
- optimal photovoltaic gap (record efficiency 19.9 %)
- self-doping with native defects \Rightarrow p-n junctions
- extraordinary stability under operating conditions: tolerance to large off-stoichiometries, stress, defects (not yet understood)
How to compare with experiments for “real” materials?

Stability of the gap

Is the gap stable under lattice distortion?

Experiments measure a stable gap (within 10%)

- Large dispersion of u
- Only hybrid-DFT calculations overlap with experiments

Anion displacement: $u = \frac{1}{4} + \left(R_{Cu-S,Se}^2 - R_{In-S,Se}^2 \right) / a^2 \neq \frac{1}{4}$.

Jaffe&Zunger, PRB 29, 1882 (1984); Merino, J. Appl. Phys. 80, 5610 (1996);
How to compare with experiments for “real” materials?

Stability of the gap

Strong variations in DFT-LDA (in agreement with literature)

www.abinit.org
How to compare with experiments for “real” materials?

Stability of the gap

E_g [eV] vs u

$G_0 W_0$ does not change the slope . . .

CuInS$_2$

www.abinit.org
How to compare with experiments for “real” materials?

Stability of the gap

... unless the gap is already open!

CuInS$_2$

E_g [eV]

DFT-LDA

G_0W_0

www.abinit.org
How to compare with experiments for “real” materials?

Stability of the gap

CuInS$_2$

E_g [eV] vs u

- **DFT-LDA**
- **G$_0$W$_0$**
- **scGW**

sc-GW enhances the gap variation

www.abinit.org
How to compare with experiments for “real” materials?

Stability of the gap

HSE06 hybrid gives an intermediate slope

\[E^{\text{HSE06}}_{xc} = E^{\text{GGA}}_{xc} + \frac{1}{4} E^{\text{HF, sr}}_{x} - \frac{1}{4} E^{\text{GGA, sr}}_{x} \]
How to compare with experiments for “real” materials?

Stability of the gap

- a modified-HSE06 (the mixing parameter of the screened Fock exchange is proportional to the screening) gives the sc-GW slope

\[
E^\text{GGA}_x + \frac{1}{\epsilon_\infty} E^\text{HF,sr}_x - \frac{1}{\epsilon_\infty} E^\text{GGA,sr}_x
\]
Is the gap stable **under lattice distortion**?

- sc-GW and hybrid calculations predict even **stronger** variations than LDA
- The gap is **not stable** under lattice distortion alone
Stability of the gap

Is the gap stable under lattice distortion?

- sc-GW and hybrid calculations predict even stronger variations than LDA
- The gap is not stable under lattice distortion alone
The formation energy of V_{Cu} varies under lattice distortion:

$$\Delta E_f = \Delta E_{\text{f DFT}} - \Delta E_{\text{scGW VBM}}$$
How to compare with experiments for “real” materials?

Formation energy of Cu vacancies

The formation energy of V_{Cu} varies under lattice distortion:

$$\Delta E_f = \Delta E_f^{\text{DFT}} - \Delta E_{\text{VBM}}^{\text{scGW}}$$

- It is essential to go beyond DFT-LDA
- **LDA+U** (blue lines) gives only constant shifts

A feedback loop can explain the stability of the band gap:

\[\Delta u \rightarrow \{ \Delta VBM \rightarrow \Delta E_f \rightarrow \Delta [V_{Cu}] \} \rightarrow \Delta E_g \]
How to compare with experiments for “real” materials?

Why is the experimental gap so stable?

A **feedback loop** can explain the stability of the band gap:

\[
\Delta u \rightarrow \{ \Delta V_{\text{BM}} \rightarrow \Delta E_f \rightarrow \Delta [V_{\text{Cu}}] \}
\]

\[
\Delta E_g = \frac{\partial E_g}{\partial u} \Delta u + \frac{\partial E_g}{\partial [V_{\text{Cu}}]} \Delta [V_{\text{Cu}}]
\]

- Experimental variation of \(\Delta u = 0.02 \Rightarrow \Delta E_g \approx 0.65 \text{ eV} \)
- Considering variations of \(\Delta u \) and \([V_{\text{Cu}}]\) \(\Rightarrow \Delta E_g \approx -0.04 \text{ eV} \)
Delafossite TCO properties

Cu(Al,In,Ga)O$_2$ thin-films are **transparent and conducting**:
- **p-type** or even **bipolar** conductivity
- combination of n- and p-type TCO materials allows
 - \rightarrow stacked cells with increased efficiency
 - \rightarrow functional windows
 - \rightarrow transparent transistors
How to compare with experiments for “real” materials?

The long dispute about delafossite gaps

The most studied compound is CuAlO$_2$:

- Indirect gap
- Minimum direct gap at L: dipole allowed
- Experimental data far from sc-GW calculations!

Is sc-GW wrong in this case?
How to compare with experiments for “real” materials?

The long dispute about delafossite gaps

Experimental data are for optical gap: exciton binding energy ≈ 0.5 eV
[Laskowski et al. PRB 79, 165209 (2009)]

Strong lattice polaron effects are expected ≈ 1 eV
[Bechstedt et al. PRB 72, 245114 (2005)]
How to compare with experiments for “real” materials?

The long dispute about delafossite gaps

All results for CuInO$_2$ are consistent with results for CuAlO$_2$

- Only 2 optical experiments
- Minimum direct gap at Γ: dipole forbidden

[Nie et al. PRL 066405 (2002)]
How to compare with experiments for “real” materials?

Bands of CuAlO$_2$ from LDA+U

- LDA+U direct gap close to experiment
- CB are rigidly shifted
How to compare with experiments for “real” materials?

Bands of CuAlO$_2$ from sc-GW calculations

- GW corrections strongly k-dependent
- CBM moves from Γ to L
- gap becomes quasi-direct
- direct gap 1.5 eV larger than experiment
How to compare with experiments for “real” materials?

Comparison with hybrid functional calculations

Strong differences both in dispersion and energy gaps
Are hybrids a good compromise?
Preliminary results for CuInO$_2$:

Strong excitonic effects also for the In compound!
How to compare with experiments for “real” materials?

Conclusions and perspectives

Methods that go beyond ground-state DFT are by now well established

- (sc)GW and BSE

Interpretation of experiments is however not straightforward!
A better starting point is absolutely necessary for d-electrons

- Self-consistent COHSEX+G_0W_0 gives a very good description of quasi-particle states
 - In all cases we studied this proved to be at the level of scGW
 - Much more friendly from the computational point of view

- Hybrid functionals give better structural parameters and are a good compromise for band structures

In progress now:

- Defects using VASP (hybrid functionals)
 - supercells up to 300 atoms
- Absorption spectra from the Bethe-Salpeter equation

http://www.etsf.eu
http://etsf.polytechnique.fr

http://www.abinit.org