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Guided Construction of a 2D TDDFT code

1 Introduction

In the following, we are going to build a code that implements time-dependent density functional theory
(TDDFT). For that purpose, we will build (i) a code that performs ground state DFT, i.e. a code that
calculates the ground-state of a many-electron system subject to an external potential; (ii) a code that
implements the time-dependent Kohn-Sham or Runge-Gross equations, i.e. that propagates in real time
the Kohn-Sham orbitals subject to the time-dependent Kohn-Sham Hamiltonian; and (iii) a code that
implements the linear-response formulation of TDDFT in the frequency domain.

There is obviously not enough time in this School to build these three elements from scratch. Hence,
we will do a “guided construction”. The code is already written, and you get a copy of it, except for some
pieces which you will have to fill in. This will speed up the process, but you will still have to dig into the
code, and in this way you will learn the manner in which the underlying TDDFT is transformed into a
working algorithm. This document is the roadmad for the construction process.

Between these two thick lines you will find side-information, suggested optional exercises,
lengthier descriptions of the algorithms forming the code, comments on alternative possibili-
ties, etc.

2 Two-dimensional problems and quantum dots.

The scope of the code is not general: it is a two-dimensional code. The reason to limit the code in this
form is that in this way the computations can be done in very short time (typically seconds or minutes).
In principle, however, the extension to the 3D problem is straightforward. The algorithms presented are
essentially the same in the 3D world. In practice, the code that you will build is specially simple and lacks
some of the features that a fully-fledged code has (e.g. non-local pseudopotentials – which are covered
elsewhere in this course –, etc). This is necessary due to the time limitation. However, the final result
will be certainly state-of-the-art, and able to reproduce in very short time calculations that are nowadays
presented in top quality research publications. Even though you may feel disappointed by the 2D nature
of the program, and think that after all it is only of academic interest, this is far from true.

Quantum dots (QDs) are artificial nano-scale devices; essentially they may be viewed as confined
electron crowds. Due to their smallness, they exhibit quantum-mechanical atom-like behavior (e.g. shell
structure). To some extent, we can consider quantum dots as the basic components of nanoelectron-
ics [1]. Quantum dots are fabricated by confining metal or semiconductor conduction-band electrons in
a localized region. There are several ways to achieve this localization; one of them is by making use of
semiconductor interfaces. In this case, the movement of the electrons is not possible in the perpendicular
direction to the interface and the thickness of the interface region is very small. The resulting structure
is known as the two-dimensional electron gas (2DEG). Laterally, the electrons also have to be confined
applying some kind of potential, which is typically modeled in some simple way.

1



Not surprisingly, DFT has been successfully applied to describe numerous examples of 2DEG QDs [2].
And, also not surprisingly, TDDFT has also played a role to describe properties related to excited-states
of 2DEG QDs [4]. The program that we will work with could be a useful tool for this kind of investiga-
tions – very active nowadays –, and not only a classroom exercise.

Some important features, however, will not be incorporated: to name a few, we will assume spin-
unpolarized calculations, and will not consider the possible presence of a magnetic field, or the extension
to current density-functional theory (CDFT) – rather relevant in this field. Regarding numerics, you may
find the design of the program, or the choice of th algorithm choice sub-optimal. We invite you to add
any feature, or to improve the code in any manner, as a final exercise or “project”, if time permits.

It is common practice to use the effective mass approximation to describe the electrons in
semiconductors or metals. This number in principle depends on the kinetic energy of the
electron, but if it turns out to be approximately a constant, the problem is greatly simplified.
We may then work with an effective Hamiltonian:

Ĥ � N

∑
i � 1

p2
i

2m
� ���

N

∑
i � 1

v̂ext � r̂i � �
N

∑
i � j

e2

4πε
1�

r̂i 	 r̂ j
��
 (1)

For the GaAs semiconductor (very common material in QDs experiments), the effective mass
m
�

is 0.067 times the mass of a free electron.

To ease the numerical work, it is convenient to choose the appropriate units system. In atomic,
molecular and solid-state Physics, this is usually the so-called atomic units system. If we take
the effective mass approximation, it is convenient to redefine this system of units: We set the
effective mass m

� � 1, the dielectric constant of the medium ε � 1, Planck’s constant h̄ � 1
and the absolute charge of the electron e � 1. In the CGS-unit system, we then get the
effective mass atomic units.

The unit of length is then then effective bohr a
�
0
� � ε � m � � a0 (a0 is the Bohr radius); the unit of

energy is the effective Hartree Ha
� � � m � � ε2 � Ha, and the unit of time is the effective atomic

time, u
�
t
� � me � h̄ � a�0. It is assumed in the code that this effective system of units is used. (In

a typical GaAs lattice, ε � 12  4ε0).

In the following, we will assume this system of units (and will the omit the symbols with
asterisks, unless necessary).

3 Kohn’s theorem, and Generalized Kohn’s theorem.

The original Kohn’s theorem [5] considers an electron gas in the presence of a uniform magnetic field.
It states that, regardless of the form of the electron-electron interaction, the only possible excitation
frequency of the system is the cyclotron frequecny, ωc � eB � mc. A very similar result may be found [6]
for an electron gas in a parabollic shape quantum well: it can only absorb radiation at the bare harmonic
oscillator frequency ω0, independently of the electron-electron interaction, and of the number of electrons
in the well.

It is easy to prove the Generalized Kohn’s theorem. Assuming a two-dimensional problem,
such as the one we are interested in, we depart from a Hamiltonian in the form:

Ĥ � N

∑
i � 1

p̂2
i � x

2m
� N

∑
i � 1

p̂2
i � y

2m
� N

∑
i � 1

1
2

mω2
0
� x̂2

i
�

ŷ2
i � �

N

∑
i � j

û � r̂i 	 r̂ j � 
 (2)
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where the interaction û is of arbitrary shape. By defining the operators ĉ � � ∑N
i � 1
� mω0x̂i

�
ip̂i � x � , prove that:

(i) for any eigenstate Φn, ĉ � Φn is also an eigenstate, Φn � 1, whose energy differs � h̄ω0 from
En;

(ii) the dipole operator ∑N
i � 1 x̂i only couples Φn to its neighbors Φn � 1.

This result is exact, and it is not obvious that any approximation to the many-body problem, such as
for example TDLDA, respects it. We will try to ascertain wether this is the case or not (answer: yes, it
is). For that purpose, we will obtain the absorption spectrum of a parabollic quantum dot both assuming
the normal Coulomb interaction, and also assuming a Yukawa form for the electron-electron interaction:

û
�̂
ri � r̂ j � � e � γr

r �
�
r �	� r̂i � r̂ j �
��� (3)

We will check that both absorption spectra are identical, and contain only one absorption peak at precisely
the harmonic well frequency, as prescribed by the theorem. We will also see how this is not the case if
we use a different external potential, i.e. a quartic potential well.

The Yukawa potential, Eq. (3), may be regarded as one “screened” Coulomb potential. It certainly does
not describe the interaction between electrons in free space. In fact, it is used to describe elementary
particles whose interaction is mediated by massive particles – not as the Coulomb interaction, mediated
by massless photons.

However, the use of the Yukawa interaction is not limited to the elementary particles world. Screened
potentials are widespread in many areas of Physics and Chemistry, since they are simple models to ap-
proximate many-body interactions [8]. For example, they may approximate the effects of the screening
between charges due to the presence of a background hot plasma. In consequence, a DFT formulation
for Yukawa-interacting is not an completely unrealistic exercise.

4 Brief outline of the code

In the directory QD, you will find all the files necessary for this exercise. You will have to edit some
of the files to complete the code; typing make after each change should re-build all the programs [The
needed rules for recompilation are described in the Makefile file; hopefully you will not need to change
it, unless you want to add or remove files from the package].

The compilation produces seven programs:

1. gs: It performs the calculation of the ground-state electronic structure of the 2D model.

2. td: It propagates the time-dependent Kohn-Sham equation’s in real time.

3. excitations: It calculates the excitation energies in the frequency domain.

4. coeff: Auxiliary program that obtains the coefficients of a one-dimensional finite difference
scheme.

5. test laplacian: Auxiliary program that tests the calculation of the Laplacian operator on a
function defined in a real space mesh.

6. test hartree: Auxiliary program that tests the integration of the Hartree term.
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7. sf: Program that calculates the sine Fourier transform of the dipole movement of the system,
which should be placed in a dipole file after having run td.

In the following, we will partly explain the files that produce these little codes. The files have “holes”,
that you will have to fill in. Also, note that the code is purposely simple-minded to increase clarity; you
may think of ideas to improve on the algorithms for performance (or just elegance) reasons. The “holes”
are marked by the delimiters:

!!!!!! MISSING CODE X
...
!!!!!! END OF MISSING CODE

The number X is an identifier number. Possible solutions for the missing parts are offered in file
missing.f90.

5 The mesh.
� We will represent the wavefunction, densities, etc. in a mesh, rather than using a basis set. The

first thing to do is to setup this real space discretization of the functions, for which purpose you
have to take a look at the Fortran 90 module mesh in file mesh.f90. The comments explain the
purpose of the module. You will also see your first task: to write the laplacian subroutine. For that
purpose you will need an auxiliary program: coeff, compiled from the source in coeff.f90

� Visit the coeff.f90 file. It contains the source of the coeff little code. This code outputs the
coefficients necessary to build a real-space discretization of the second order derivative (or any
other derivative).

We need the coefficients
�
c
�
k ����� N

k � � N to build up an expression in the form:

∂2 f
∂x2

�
x0 � � c0 f

�
x0 ���

N

∑
k � 1

ck f
�
xk ��� � N

∑
k � � 1

ck f
�
xk ��� (4)

This expression provides an approximation for the second derivative of a function f at a mesh
point x0, in terms of the values of f at the neighbor points (and itself) xk � kh � k � � N � � � � � N. You

may then build the Laplacian simply by doing ∇2 � ∂2 f
∂x2 � ∂2 f

∂y2 . The program is already prepared

for a 9-point formula (N � 4) of the second derivative. You just need to run the code, and use the
coefficients to build up the Laplacian:

whatever-prompt-you-have> ./coeff
c(0) -0.1785714E-02

c( 1: n) = 0.1600000E+01 -0.2000000E+00 0.2539683E-01 -0.1785714E-02

c(-1:-n) = 0.1600000E+01 -0.2000000E+00 0.2539683E-01 -0.1785714E-02

For the curious, it is maybe worthed a little explanation on what we have just done.

The most common approach to the electronic structure problem (either with DFT or with any
other method) is the expansion of the wavefunctions (and related functions) in terms of a set
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of basis functions. This approach has two important properties, which may be easily derived
from the variational principle: (i) The aprroximate ground-state energy obtained with a given
basis set is always an upper bound to the exact value; any supplement to the basis set will
yield a lower energy; (ii) The energy displays a quadratic convergence with increasing basis
set size. Despite these two nice features, basis set expansion is not the only approach to the
electronic structure problem. An alternative are the “real-space” methods, which rely on the
representation of functions directly on a real-space grid, either regular (as the one we are
using) or adapted to the problem at hand.

In a real-space implementation, the functions are represented in a real space grid, i.e., we
know their values on a selected set of sampling points, � x j � M

j � 1, which typically are arranged
in a regular mesh (in the following, we will assume a one-dimensional problem; the extension
to two or three dimensional problems will be done later):

f ��� f � x j � � j � 1 � � � � �M  (5)

We want to calculate its n-th derivative in a finite difference scheme.

Let us call x0
� 0, and let us assume that we want to get the n-th derivative of f in x0

� 0,
f � n � � x � 0 � . As input information, we will use the values of f at N points to the right, and N
points to the left, besides f � x0 � : � f � xk � � N

k ��� N . The objective is to obtain a linear expression
of the form:

f � n � � x0 � � c0 f � x0 � �
N

∑
k � 1

ck f � xk � �
� N

∑
k �	� 1

ck f � xk �  (6)

The problem is then to obtain the set of coefficients ck. For that purpose, we consider the set
of polynomials:

gl
� x � � xl 
 l � 0 
    
 2N  (7)

Their n-th derivatives are:

g � n �l
� x � �


� � l � l 	 1 �    � l 	 n
�

1 � xl � n 
 n  l
n! 
 n � l
0 
 n � l

(8)

In x � x0
� 0:

g � n �l
� x0 � � δnln!  (9)

We may then join Eq. 6 and 9 to obtain 2N
�

1 equations. To clarify ideas, let us begin by
approximating the first derivative, n � 1:

l � 0 : g � 1 �0
� x0 � : 0 � c0

� ∑N
k � 1 ck

� ∑ � N
k �	� 1 ck

l � 1 : g � 1 �1
� x0 � : 1 � 0

�
∑N

k � 1 ckxk
�

∑ � N
k �	� 1 ckxk

l � 2 : g � 1 �2
� x0 � : 0 � 0

� ∑N
k � 1 ckx2

k
� ∑ � N

k �	� 1 ckx2
k   :    :    �   

l � 2N : g � 1 �2N
� x0 � : 0 � 0

�
∑N

k � 1 ckx2N
k
�

∑ � N
k �	� 1 ckx2N

k

(10)

It is useful to setup this linear system in matrix form. We define:

xT ��� x1 
    
 xN 
 x � 1 
    
 x � N � 
 (11)

cT ��� c1 
    
 cN 
 c � 1 
    
 c � N � 
 (12)

A � x � ������ x1    xN x � 1    x � N

x2
1    x2

N x2� 1    x2� N                 
x2N

1    x2N
N x2N� 1    x2N� N

����� 
 (13)

5



and the n-th unit vector in the 2N dimensional space:

eT
n
��� 0 
    
 
 0 
 n1 
 0 
    
 0 �  (14)

The coefficient c0 will always be c0
� 	 ∑N

k � 1 ck 	 ∑ � N
k ��� 1 ck. The rest of the coefficients may

be derived from the resulting system, which, for n � 1, is:

A � x � c � e1 (15)

It is very easy to generalize this expression for higher derivatives: the n-th derivative coeffi-
cients may be obtained through:

A � x � c � n!en (16)

Note that, up to now, we have not enforced a regular mesh; the positions � xk � , measured with
respect to the “problem” point x 0

� 0, are arbitrary. It is clear from the previous formulas,
how to build finite differences schemes with irregular meshes: for each point in the mesh,
one has to solve the previous linear system built with its neighboring points, and obtain the
resulting coefficients (which will be different for each point). In laplacian subroutine,
however, we have assumed a regular mesh. The neighboring points of a given point x0

� 0 in
a regular mesh can be easily described by:

xk
� kh 
 k � 	 N 
    
 N  (17)

We may now illustrate the procedure with the simplest example: approximation to the first
derivative with N � 1, i.e. only two neighboring points. The matrix equation is:

�� 1 1 1
0 h 	 h
0 h2 � 	 h � 2

�� �� c0

c1

c � 1

�� � �� 0
1
0

��  (18)

Solving this linear system one obtains the well known formula:1

f � � x0 � � f � x1 � 	 f � x � 1 �
2h

 (19)

The program coeff is setup to provide the N � 4 approximation to the second derivative.
However, subroutine ����� ��� is more general and can be used to get arbitrary derivatives, out
of an arbitrary number of points, distributed non-uniformly around the problem point.

As an exercise, you may try to implement derivatives of various orders, and check how the
errors behave with increasing approximation orders.

� You may test the Laplacian that you have built by running the test laplacian program. It defines
a Gaussian distribution in the form:

n
�
r � � 1

2πα
e � r2 � α2

� (20)

(which, incidentally, is normalized: � d3r n
�
r � � 1). The program calculates numerically the Lapla-

cian of this function, and compares it to the exact result which may be easily obtained analytically.
You may see how the accuracy depends on the ratio between the “hardness” parameter α and the
grid spacing, and on the order of discretization.

1Fornberg and Sloan [7] provided an algorithm to obtain the coefficients without solving the linear system.
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6 Setting up the Hamiltonian
� Take a look at the module states in file states.f90: It holds the number of occupied and

unoccupied orbitals that are to be considered. In our simple example, we will always consider
spin-unpolarized calculations with doubly occupied KS orbitals. The module also contains the
variables that describe the wavefunctions.

� Now you must define the external potential that confines the quantum dot. For that purpose,
you must visit the external pot subroutine in the epot.f90 file. You may play with different
potentials; for our first example we will need a harmonic potential in the form:

Vhar
�
r � � 1

2
ω2

0r2 � (21)

For example, to use numbers of the order of the ones in the calculations presented in Ref. [3]
(maybe it is worth if you read that paper to get an idea of what we will be doing later), set ω to
0.22 Ha � . In a following example, we will make use of a quartic potential:

Vquar
�
r � � αr4 � (22)

A reasonable value for α in this case is 0.00008.

� The following task is providing the code with a procedure to calculate the Hartree potential out of
a given density:

VH
�
n � � r � �

�
d3r

n
�
r � �

� r � r � � � (23)

It turns out that this old problem and continues to be, one of the key computational challenges. In
one and two-dimensional problems, one may actually use the obvious and slow solution: perform-
ing directly the sum on the grid. If

�
ri � denote the set of grid points:

VH
�
n � � ri � � ∑

j

n
�
r j �

� ri � r j � δv � (24)

In this equation, δv denotes the volume (surface, in 2D) surrounding each grid point (δv � ∆2 if ∆
is the grid spacing in 2D). In case of using an interaction in the form of the Yukawa potential, the
equation must change accordingly:

VH
�
n � � ri � � ∑

j

e � γ � ri � r j � n
�
r j �

� ri � r j � δv � (25)

Of course, you encounter an infinity problem when i � j. The way to circunvent this
problem in 2D is:

VH
� n � � ri � � ∑

j �� i

n � r j ��
ri 	 r j

� δv
�

2∆ � πn � ri �  (26)

which is the algorithm that you may implement. We also invite you the work of think-
ing why the previous equation appropriately approximates the Hartree potential.
[Incidentally, you may also want to prove that in the Yukawa case, the i � j term

should be 2πn � ri � 1 	 e � γ∆ �
	 π

γ
, which reduces to the Coulomb case when γ � 0]

7



Unfortunately, this easy scheme is slow, and becomes unpractical when the size of the system
grows – it is easy to see that it is an O

�
N2 � , algorithm, where N is number of mesh points. In 3D

one should not try to use it. An alternative is to perform the integral in Fourier space; by making
use of the convolution theorem, it is easy to see that in the plane wave representation, the Coulomb
(or Yukawa) interaction is diagonal. In the case of the Yukawa interaction (the Coulomb case is
easily obtained by taking γ � 0):

ũH
�
G � � 2π

γ
�

1 � G2

γ2
�

ṼH
�
n � � G � � ũH

�
G � ñ � G ��� (27)

However, when applying this technique to the Coulomb interaction (and also to the Yukawa in-
teraction, depending on the magnitude of γ) for finite or aperiodic systems, one encounters one
difficulty inherently linked to the plane wave representation: a plane wave representation neces-
sarily implies periodic boundary conditions, and replication of the original charge density in an
infinite array. Since the Coulomb interaction is long-ranged, the simple application of the previ-
ous equations (27) includes the interactions of the replicas with the original system. This must be
avoided. One possible solution is to define a cutoff on the interaction, e.g.:

uR
H
�
r � ��� 1

r � r � R
0 � r � R

(28)

One then uses ũR
H

�
G � in Eqs. (27).

Due to the lack of time, we have purposely shortened the discussion of the Hartree
problem in the main text. Numerous authors have addressed the problem; our vanity
leads us to cite our own work on the subject [20], which describes the plane wave
solution, although in the 3D case (other references maybe found therein).
In the 2D case, and considering – as we have, in this program – a distribution of charge
n placed in a square of side L, the procedures begins by placing it in a bigger square
of side � 1 � � 2 � L, padding with zeros the extra space. Then one defines an interaction
in the form of Eq, (28), with R � � 2L. It is easy to see that this guarantees that the
interaction does not change within the original charge distribution, but at the same
time avoids interaction between neigboring cells. Then one needs to get the Fourier
transform of the interaction, ũRH

� G � (prove this!):

ũRH
� G � � R

∞

∑
k � 1

Jk
� RG � � � RG �  (29)

In the Yukawa case, however, one needs not to define a cutoff, since the potential is
short-ranged by definition. The solution is to define the bigger cell large enough to
make the interaction between cells negligible, and then apply Eqs. (27) directly.
Both options, for the Coulomb and for the Yukawa case, are implemented in the
poisson module.

To practice some programming, you may want to code the simple solution of Eq. (26), in sub-
routine poisson sum in the poisson module (file poisson.f90). In this module, you may see
that one needs to set through the values of some variables, which interaction to use (Coulomb or
Yukawa), what is the value of the Yukawa parameter in case of using it, and which method to use
(the direct sum, or the plane waves approach).
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To try out the accuracy of the implemented schemes, you may want to take a look at the program
test hartree and run it.

� Now it is time to define the exchange and correlation term, which are placed in file vxc.f90. The
subroutine that you have to use is vxc lda, which provides the exchange and correlation potential
and energies in the local density approximation (LDA). The expressions are:

Ex
�
n � �

�
d3r n

�
r � εHEG

x

�
n
�
r � � ; vx

�
n � � r � � δEx

�
n �

δn
�
r � � (30)

Ec
�
n � �

�
d3r n

�
r � εHEG

c

�
n
�
r � � ; vc

�
n � � r � � δEc

�
n �

δn
�
r � � (31)

εHEG
x

�
n � and εHEG

c
�
n � are the exchange and correlation energy per particle, respectively, of the 2D

HEG of density n.

The exchange term may be derived analytically (obvious exercise: derive it):

εHEG
x

� n � � 	 4 � 2

3 � π
� n  (32)

The correlation term, however, is much more involved. One has to resort to numerical
results (typically of Quantum Monte-Carlo type), which are later parameterized for
easy use in DFT codes. We have chosen the expression parameterized by Attaccalite
and coworkers [21], which for the spin-unpolarized case, has the form:

εHEG
c

� n � � a
� � brs

�
cr2

s
�

dr3
s ��� Ln

�
1
� 1

ers
�

f r3 � 2
s
�

gr2
s
�

hr3
s � 
 (33)

where rs is the Wigner-Seitz radius of the 2D HEG (rs
� 1 � � πn).

You may find the generalized subroutines for the spin-polarized case in the octopus
distributions.

(i) You may easily derive the exchange term for a homogeneous electron gas of arbi-

trary polarization ξ � n � 	 n �
n � � n � by making use of the identity (spin-scaling identity):

Ex
� n � 
 n � � � 1

2
Ex
� 2n � � � 1

2
Ec
� 2n � �  (34)

The result is εHEG
x

� n 
 ξ � � 1
2 � � 1 � ξ � 3 � 2 � � 1 	 ξ � 3 � 2 ��� εHEG

x
� n 
 0 � .

(ii) Generalize the given subroutines to allow for spin polarized cases.

� Subroutine interaction pot in file ipot.f90 has the task of building the terms of the Kohn-
Sham potential that arise from the electronic interaction: the Hartree and exchange and correlation
terms. It is useful if one writes it in such a way that it is easy to disconnect any of the terms at will,
as it is done in the suggested solution in file missing.f90.

� In file hpsi.f90, you have to fill two subroutines: hpsi and zhpsi. They should apply the Kohn-
Sham Hamiltonian on an input wavefuction, respectively real or complex.
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7 The SCF cycle, and the ground state program.
� It is now time to build one of the mains: the gs program, in charge of obtaining the ground state

Kohn-Sham orbitals. Note that the main program, in gs.f90 file, consists essentialy of some
initializations, and a call to the scf subroutine, explained below and which performs the self-
consistent cycle.

� An essential step in each step of the self-consistent procedure is the diagonalization of the current
approximation to the Kohn-Sham Hamiltonian (the exact one at the end of the cycle). For this
task we have implemented a conjugate-gradients algorithm in conjugate gradients subroutine
in cg.f90 file. We have chosen to implement the simple yet succesful scheme suggested by H.
Jiang, Baranger and Yang [9].

The computational research on eigensolvers starts with the works of Jacobi, long time
before the existence of computers. Until the 1960s, the state of the art is dominated by
the QR algorithm and related schemes, suitable for the full diagonalization of general,
albeit small, matrices. The eigenproblem has thereafter proved to be ubiquitious in all
disciplines of Science; In Ref. [10] you may find introductions to the topic.
In our case, we are confronted with the algebraic eigenproblem that emerges from the
real-space discretization of the Kohn-Sham equations (a similar problem arises when
other representations, e.g., plane waves, are used). The Kohn-Sham operator is the
sum of a potential term (typically non-local, although not severely non-local) and a
partial differential operator. In most DFT electronic-structure method, the solution
to this eigenproblem is the most time-consuming part of the calculations. Some key
features of this problem are:

– Large size. Typically, the matrix dimension is 105-106 (smaller, in the 2D case).
Not even modern supercomputers may store the full matrix in memory; one re-
quires solvers that need only to know how to operate the Hamiltonian on a vector.

– Sparsity. This is the reason that facilitates the solution, despite the enormous di-
mensions. The non-null elements of the matrix are normally a few rows around
the diagonal – its number depending on the order of discretization of the Lapla-
cian operator. Non-local pseudopotentials add more non-diagonal terms.

– Hermiticiy. The Hamiltonian of a physical system should be an observable.
– One is interested only on the smallest eigenvales, i.e. one only needs one small

part of the spectrum, not the 105-106 eigenpairs.
– Usually, approximations to the eigenpairs are available. The reason is that the

eigenproblem has to be solved at each iteration in the SCF cycle. One can use the
solutions obtained in the previous step as initial guesses for the present step.

– Typically, and related to the previous point, the solution algorithms are iterative,
i.e. the solutions are obtained by iterative improvement of approximate guesses.

This is a shallow enumeration of typical approaches:
– The implemented eigensolver is a conjugate gradients method, very much in the

spirit of the approaches described in the papers cited in Ref. [11]. However, the
preconditioning employed in these references, which is based on the fact that the
kinetic term is diagonal in a plane wave approach, cannot be used in our real
space case.

– Another option is the preconditioned block-Lanczos algorithm [15] implemented
by Saad and collaborators, already used for DFT electronic calculations. In this
case, the preconditioning is based of high-frequency filtering in real space.

– Another Lanczos-type eigensolver, namely the one implemented in the ARPACK

package [12]. 2

2ARPACK can be found at http://www.caam.rice.edu/software/ARPACK/.
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– And yet another free implementation of the blocked-Lanczos eigensolver is the
TRLAN package. 3 Regarding this approach, and the Lanczos approach to the
eigenproblem, see Refs. [10, 16, 17].

– Finally, another (related) and commonly invoked algorithm suitable for this type
of calculation is the Davidson algorithm [13], and, more recently, the Jacobi-
Davidson scheme [14]. The precise implementation that we have tried is the
JDQR package [18].

� The scf subroutine, in the scf file, takes care of closing the self-consistent cycle that solves
the Kohn-Sham equations. The basic algorithm is depicted in Fig. 1; you may practice some
programming by implementing it in some way in the scf subroutine.

Figure 1 suggests that the input density (the density that defines the Kohn-Sham Hamil-
tonian at each SCF cycle step ĤKS

� n � i � � ) is the output density of the previous step
(the density obtained from the wavefunctions that results of the diagonalization of the
Hamiltonian of the previous step). This doesn’t work properly, and one has to mix this
output density with the densities of previous iterations to guarantee the convergence.
The simplest method is the linear mixing:

n � i � 1 � � αn � i �output
� � 1 	 α � n � i � 
 (35)

for some mixing parameter α. You may implement this simple (yet very safe) scheme;
more sophisticated and much more efficients options are given in Ref. [19].

� Now the gs program should be finished. Run it at will to test it and check that everything works
fine.

If you use the confining potential defined in Eq. (21) and only one occupied orbital (i.e. one
quantum dot with only two orbitals) you should get some output similar to:

SCF CYCLE ITER # 69
diff = 1.0075E-07

1 7.60044118E-01 8.57155697E-06

SCF CYCLE ENDED

diff = 8.0597E-08
Etot = 8.5714E-01

1 7.60044201E-01 8.57493997E-06

(i) You may check how the eigenvalues depende on the strength of the interaction. It will also
be interesting to see, depending on the shape of the confining potential, how the many-body
excitation energies differ from the differences in eigenvalues.

(ii) Spread along the code, there are some calls to the output subroutine, in the output.f90
file. These calls plot the functions in the 2D grid. They may be easily plotted with the
gnuplot command splot. For the previous example, you will get e.g. the rho file with the
density, whose plot is depicted in Fig. 2.

3TRLAN can be found at http://www.nersc.gov/˜kswu/.
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n0
�
r �

vKS
�
n � � r �

ĥKS
�
n � ψi

�
r � � εiψi

�
r �

n
�
r � � ∑i �ψi

�
r � � 2

converged?

yes

no

end

Figure 1: Flow-chart depicting a generic Kohn-Sham calculation

8 Propagators, and the time-dependent program.

� First, take a look at the main of the time-dependent program: td. In this case, you just need to read
the file, since in fact all that the main does is calling at the end the propagate subroutine.

� There is nothing exciting in subroutine propagate.f90, as you will see. The key parameters that
define the propagation (total time of simulation, and time step) are defined in the prop time and
dt variables. Note that at each time step one needs to recalculate the Hamiltonian – TDDFT is a
problem that involves time-dependent Hamiltonians, no matter if there is an external perturbation
or not.

The real work of propagating the wavefunctions is done by the propagator subroutine.

� The subroutine that implements the approximator to the quantum mechanical propagator Û
�
t � ∆t � t �is written in the propagator subroutine in then propagator.f90 file. You will be told about

propagators in other parts of the School; in this subroutine we have implemented the following
approximation (you are welcome to try out other possibilities):

Û
�
t � δt � � exp

� � i
δt
2

ĤKS
�
t � δt ��� exp

� � i
δt
2

ĤKS
�
t ��� � (36)

where the (in principle unknown) ĤKS
�
t � δt � is approximated by considering the density that

results of the wavefunctions obtained by the crude estimation:

φi � exp
� � iδtĤKS

�
t ��� φi

�
t ��� (37)
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Figure 2: Electronic density of a two-electron harmonic-well quantum dot.

� The previous algorithm requires the computation of the action of the exponential of the Hamilto-
nian. For this purpose, it calls the exponential subroutine, which is the main object of the expo
module in the exponential.f90 file.

Elsewhere we will comment on numerical algorithms suited for this particular and important task.
The most obvious you can imagine: truncating the Taylor expansion of the exponential to a certain
order:

exp
� � iδtĤKS � φ �

k

∑
i � 0

1
k!

Ĥk
KSφ � (38)

This one you have to supply. Then you will see that there are other two options, which in fact
implement the same algorithm, the so-called Lanczos-based approximation to the exponential.
One of them is a simple-minded implementation of the algorithm, whereas the other makes use of
the expokit package, a free library that implements the same idea in a more elaborate way. For
the purpose of running the code, you may want to try them all and finding out which one of them
is faster for each particular problem.

9 Checking the GKT.

We now have working ground-state and time-dependent codes. We can thus make our first TDDFT
calculations.

� We will start with a two-electron quantum dot, modeled by a harmonic potential, such as the one
defined in Eq. (21). Once that you have obtained its ground-state, you may start the td program to
get its evolution. For that purpose, however, you have to setup a few things:

– In propagate subroutine, variables prop time and dt. Regarding the former, one needs to
do a simulation long enough to “see” the frequencies that one is seeking. For the purpose of
our tests, a propagation of about 2000 effective-mass atomic units should be enough (notice
that we are doing calculations very similar to the ones presented in Ref. [3], where these
values are also taken).
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– In perturbation subroutine, the shape and magnitude of the initial perturbation. For the
purpose of obtaining the optical absorption cross section, one typically uses a perturbation in
the form:

φi
�
r � t � 0 � � eik � rφGS

i
�
r ��� (39)

One may setup the magnitude of the perturbation k and its direction.

Then, one can run the td program. The program sends to standard output the total energy of the
system at each time step; since the many-body Hamiltonian is time independent, this magnitude
should be conserved. If it is not, you must rethink the time-step, or the characteristics of the
propagation algorithm. Also, the file dipole is written as the program evolves. It contains three
columns: the time, the dipole in direction x, and the dipole in direction y. This is the signal from
which one may obtain the excitation energies.

Then you may analyze where the excitations lie by taking the sine Fourier transform of the dipole
signal. For that purpose, we have put a very simple program, sf, whose source is in the sf.f90
file. You may learn how it works by reading its comments.

Take a look then at the spectrum. The key questions are: how many spectral peaks do we get? At
what energies?

� Now repeat the exercise, but changing to a Yukawa form for the inter-electronic interaction (setting
interaction to YUKAWA in the poisson module. You also have to specify the γ parameter (gamma
variable). A value of 2.0 a.u. � 1 is reasonable. Notice that now you have to disconnect (or change,
if you feel like doing that work) the exchange and correlation parts of the potential.

Yes, we cannot use the usual expressions for the exchange and correlation potential. The
reason is that they are deduced assuming a Coulomb interaction. For the exchange-term, if
you are curious, one can derive the exchange energy per particle of a homogeneous fermion
gas interacting through Yukawa’s potential. The result is (for 2D):

εx
� n � � 	 γ

2
� 2F1

� 	 1
2

 1
2

;2; 	 8πn
γ2 � 	 1 � 
 (40)

where 2F1
� a 
 b;c;x � is the so-called Gauss hypergeometric function.

(i) Derive the previous equation. (Hint: (at least this is what I did) Follow the derivation of
the Coulomb exchange energy per particle for a HEG in Ref. [22], considering 2D instead of
3D, and Yukawa interaction instead of Coulomb interaction).4

(ii) Does the previous equation reduce to the Coulomb expression for γ � 0? (Hint: use
Mathematica).

(iii) Implement the previous equation in the code, in order to get a local density approximation
for the exchange of a Yukawa-electrons gas. (Hint: The hypergeometric functions are defined
in the GSL library. We already have interfaces to GSL functions in the file gslwrappers.c,
so you just have to add the appropriate one.).

I have not even tried to think about the correlation term...

� The question is now: how does the new spectrum compare with the one in which the Coulomb
interaction is used?

4Please let me know if you obtain a different result, since I did not check previous equation with any other source...
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� Now, if you still feel like working, repeat previous tests but using the quartic potential of Eq. (22).
You should see that (i) there is no longer one single peak in the response (note that there may be
large differences in the strengths of the different peaks) and (ii) the response obtained when using
different forms for the inter-electronic interaction is no longer the same.

10 Linear-Response TDDFT

Finally, we have arranged an almost-complete code that performs TDDFT calculations within the linear
response formalism [23]. This is not the place to derive the equations that are actually solved; let us just
present them very quickly. Let us assume that we have obtained the set of occupied states

�
φ i � (in the

following, i and k run over occupied states) and a set of unoccupied states
�
φ j � (in the following j and

l run over unoccupied states). You may obtain these states with the gs program, by setting at will the
N occ and N empty variables.

In the linear response formalism, the excitation energies may be obtained by solving the following
eigenvalue equations (the excitation energies are the square roots of the eigenvalues):

QFI � Ω2
I Fi � (41)

The matrix Q is m-dimensional, where m is the number of occupied-unoccupied KS orbital pairs. It is
defined to be:

Qi j � kl � δikδ jlω2
kl � 2

�
λi jωi jKi j � kl

�
λklωkl � (42)

In this equation, ωi j � ε j � εi, the difference of the corresponding eigenvalues. λi j � fi � f j is the
difference in occupation numbers of the orbitals. The key magnitude is the coupling matrix K:

Ki j � kl � 2 � φiφ j � 1

� r � r � � � φkφl ��� 2 � φiφ j � δvxc
�
n � � r � �

δn
�
r � � φkφl ��� (43)

Very importantly, in the LDA, the second term may be simplified:

δvxc
�
n � � r � �

δn
�
r � � δ

�
r � r � � dvxc

dn

�
n
�
r � � � (44)

Your task is now to read the excitations program in excitations.f90 file, and see how the previous
equations are implemented, adding whatever pieces may be missing. Then you can run any of the models
of quantum-dots that you wish, and see how these results compare with the previous approaches.

Typically, the previous calculations of the excitation energies is complemented with the cal-
culation of their strengths. By reading any of the classical references of linear response
within TDDFT [23], you may locate the appropriate expressions and implement them (all the
necessary quantities are already calculated previously).
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