Models for Time-Dependent Phenomena

- I. Phenomena in laser-matter interaction: atoms
- II. Phenomena in laser-matter interaction: molecules
- III. Model systems and TDDFT

Manfred Lein

Outline

Model systems and TDDFT

- Double ionization of Helium
- Adiabatic approximations
- Multicomponent TDDFT
- The dissociation problem revisited
- Numerical issues

Nonsequential double ionization of Helium

Walker et al., PRL 73, 1227 (1994)

Experimental observations:

 double ionization orders of magnitude larger than expected from sequential ionization

"sequential" ionization probability means:

$$p_{\text{seq}} = p(\text{He} \rightarrow \text{He}^+) \ p(\text{He}^+ \rightarrow \text{He}^{++})$$

• $\mathrm{He^{2+}}$ knee at $\mathrm{He^{+}}$ saturation intensity

Nonsequential double ionization of Helium

Walker et al., PRL 73, 1227 (1994)

Experimental observations:

 double ionization orders of magnitude larger than expected from sequential ionization

"sequential" ionization probability means:

$$p_{\text{seq}} = p(\text{He} \rightarrow \text{He}^+) \ p(\text{He}^+ \rightarrow \text{He}^{++})$$

• He²⁺ knee at He⁺ saturation intensity

Theory: Knee is only reproduced by

- exact solution of the two-body TDSE
- S-matrix theory (Becker and Faisal)
- later: TDDFT with derivative discontinuity

A one-dimensional two-electron model atom

Two electrons along a line parallel to the laser polarization axis:

$$H(t) = -\frac{1}{2} \frac{\partial^2}{\partial z_1^2} - \frac{1}{2} \frac{\partial^2}{\partial z_2^2} - \frac{2}{\sqrt{z_1^2 + 1}} - \frac{2}{\sqrt{z_2^2 + 1}} + \frac{1}{\sqrt{(z_1 - z_2)^2 + 1}} + E(t)(z_1 + z_2)$$

[Grobe and Eberly, PRA 48, 4664 (1993)]

All particle-particle interactions are soft-core potentials with Coulomb tail (gives Rydberg series).

The TDSE can be solved numerically exactly, so the model is useful to obtain

- qualitative insight into ionization mechanisms,
- exact results for comparison with DFT approaches.

Calculation of ionization probabilities

Box integration: consider electron as free when it is farther from the nucleus than some given distance, e.g. a = 5 a.u.:

$$p(\text{He}) = \int_{-a}^{a} dz_1 \int_{-a}^{a} dz_2 |\Psi(z_1, z_2)|^2$$

$$p(\text{He}^+) = 2 \int_{-a}^{a} dz_1 \int_{|z_2| > a} dz_2 |\Psi(z_1, z_2)|^2$$

$$p(\text{He}^{++}) = \int_{|z_1| > a} dz_1 \int_{|z_2| > a} dz_2 |\Psi(z_1, z_2)|^2$$

Only approximate, but useful for comparison with DFT results.

Calculation of ionization probabilitied

1D Model yields knee structure for double ionization.

[Dahlen and van Leeuwen, PRA 64, 023405 (2001)]

Mechanisms under discussion were

- rescattering
- shake-off (relevant mechanism for high photon energies)
- collective tunneling

TDSE contains all information, but difficult to extract.

Evolution in two-electron momentum space ($\lambda = 780$ nm, $I = 10^{15}$ W/cm²)

Numerical experiment to test ionization mechanism

[M.L., E.K.U. Gross, V. Engel, J. Phys. B 33, 433 (2000)]

→ excludes shake-off or collective tunneling.

Wigner function evolution for el. center of mass provides classical picture:

[M.L., E.K.U. Gross, V. Engel, PRL 85, 4707 (2000)]

Time-dependent density functional theory

• Runge-Gross theorem:

The density $n(\mathbf{r},t)$ determines the external potential uniquely (up to a time dependent constant).

Time-dependent Kohn-Sham (KS) scheme:

Ficticious system of non-interacting particles described by orbitals φ_k

$$n(\mathbf{r},t) = \sum_{k=1}^{N} |\varphi_k(\mathbf{r},t)|^2$$

$$i\frac{\partial}{\partial t}\varphi_k(\mathbf{r},t) = \left(-\frac{1}{2}\nabla^2 + v_{KS}(\mathbf{r},t)\right)\varphi_k(\mathbf{r},t)$$

$$v_{KS}[n]\mathbf{r}(t) = v_{ext}(\mathbf{r},t) + \int \frac{n(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|} + v_{xc}[n](\mathbf{r},t)$$

Physical observables are calculated as functionals of the density.

TDDFT for two electrons

For Helium (two electrons in a singlet state), there is only one KS orbital

$$\varphi_{\uparrow}(\mathbf{r},t) = \varphi_{\downarrow}(\mathbf{r},t) = \varphi(\mathbf{r},t)$$

and

$$n(\mathbf{r},t) = 2|\varphi(\mathbf{r},t)|^2$$
.

The exact exchange potential is

$$v_{\mathbf{x}}(\mathbf{r},t) = -\frac{1}{2}v_{\mathbf{H}}(\mathbf{r},t),$$

and furthermore

x-only TDDFT = TD Hartree-Fock.

Usual approximations

- Simple expressions for the xc potential: adiabatic LDA, LDA-SIC, TDKLI,
 ...
- Mean-field approach for ionization probabilities: Assume $\Psi({\bf r_1},{\bf r_2},t)\approx$ Kohn-Sham state

$$\Rightarrow p(\text{He}) = \left(\int_A d^3r |\varphi(\mathbf{r},t)|^2\right)^2, \qquad p(\text{He}^{++}) = \left(1 - \int_A d^3r |\varphi(\mathbf{r},t)|^2\right)^2$$

→ No success to reproduce the knee Underestimation of single ionization

However, inserting the exact density into mean-field functional reproduces a knee.

[Lappas and v. Leeuwen, J. Phys. B 31, L249 (1998)]

Calculation of exact xc potential

One-dimensional model system

$$H(t) = -\frac{1}{2} \frac{\partial^2}{\partial z_1^2} - \frac{1}{2} \frac{\partial^2}{\partial z_2^2} - \frac{2}{\sqrt{z_1^2 + 1}} - \frac{2}{\sqrt{z_2^2 + 1}} + \frac{1}{\sqrt{(z_1 - z_2)^2 + 1}} + E(t)(z_1 + z_2)$$

- Solve time-dependent Schrödinger equation and calculate exact time-dependent density n(z,t) and current j(z,t)
- Calculate exact KS orbital $\varphi(z,t) = \sqrt{n(z,t)/2} \, \exp{(i\alpha(z,t))}$ with phase α from current density $j = \frac{1}{i} (\varphi^* \partial_z \varphi c.c.) = n \partial_z \alpha$
- Calculate "exact" KS potential by inversion of the split-operator propagator: $\varphi(z,t+\delta t)=e^{-iT_{\rm s}\delta t}e^{-2iv_{\rm KS}\delta t}e^{-iT_{\rm s}\delta t}\varphi(z,t-\delta t)$

$$\rightarrow v_{\rm KS}(z,t) = -\frac{\hbar}{2\delta t} \arcsin \Im \frac{e^{+iT_{\rm S}\delta t/\hbar}\varphi(z,t+\delta t)}{e^{-iT_{\rm S}\delta t/\hbar}\varphi(z,t-\delta t)} + {\rm const}$$

The Kohn-Sham current density

Question:

Is KS current density = current density in the interacting system?

The Kohn-Sham current density

Question:

Is KS current density = current density in the interacting system?

Continuity equation must hold in both systems:

$$\dot{n} + \nabla \mathbf{j} = 0$$
$$\dot{n}_{KS} + \nabla \mathbf{j}_{KS} = 0$$

Because densities n, $n_{\rm KS}$ are equal, we have $\nabla \mathbf{j} = \nabla \mathbf{j}_{\rm KS}$.

In general, it is unclear whether $\mathbf{j} = \mathbf{j}_{\mathrm{KS}}$, but in 1D, we have

$$\partial_z j = \partial_z j_{\rm KS}$$
,

and for finite systems, we have $j \to 0$ for $|z| \to \infty$.

Therefore $j = j_{KS}$ in 1D finite systems.

To avoid numerical difficulties: choose static field

$$E = 0.14 \text{ a.u.}$$

Numerical results

M.L., S. Kümmel, PRL 94, 143003 (2005)

- → x-only DFT gives
- good description of initial state
- wrong time-evolution

Relation to derivative discontinuities in static DFT

Static DFT with fractional occupation

Time-dependent DFT

Exact static potentials for various fractional particle numbers

$$N=1+\epsilon$$
,

using the ground-state density $n(z) = (1 - \epsilon)n_1(z) + \epsilon n_2(z)$

(a) N=1.5

(b) N=1.1 (c) N=1.0001

solid: $v_{\rm Hxc}$, dashed: v_c

Derivative discontinuity

Fractional particle numbers in static DFT:

xc potential jumps by Δ_{xc} when the particle number passes through an integer.

Interpretation of time-dependent results:

In ionization a small fraction of an electron is ejected; if the process is adiabatic, a ground-state with fractional number of bound electrons is left.

Difficulty: the discontinuity around N=1 is not in the exchange but in the correlation potential.

Derivative discontinuity

Suitable quantity for comparison of DFT and exact calculations:

the number of bound electrons $N_{\text{bound}} = \int_V n(\mathbf{r}) d^3r$ with an appropriate region V around the nucleus.

Advantage compared to ionization probabilities: no problems with expressing the functional.

Simple guess for a functional

KS potential should retain its initial repulsive character.

→ Introduce weighting factor to compensate for loss of electron density:

$$v_{\text{Hxc}}(\mathbf{r}, t) = \frac{2}{N_{\text{bound}}} v_{\text{Hx}}(\mathbf{r}, t), \quad N_{\text{bound}} > 1$$

 $v_{\text{Hxc}}(\mathbf{r}, t) = 0, \quad N_{\text{bound}} \le 1$

Simple guess for a functional

KS potential should retain its initial repulsive character.

→ Introduce weighting factor to compensate for loss of electron density:

$$v_{\text{Hxc}}(\mathbf{r}, t) = \frac{2}{N_{\text{bound}}} v_{\text{Hx}}(\mathbf{r}, t), \quad N_{\text{bound}} > 1$$

 $v_{\text{Hxc}}(\mathbf{r}, t) = 0, \quad N_{\text{bound}} \le 1$

Ionization in a laser pulse

N-Adiabatic approximation

TDKS scheme with the following additions:

- Determine at every time the (fractional) number $N_{\rm bound} = N 1 + \epsilon$ of bound electrons.
- Construct ground-state density for this fractional particle number: $\boxed{n_0(\mathbf{r}) = [1 \epsilon(t)] \, n_{0,N-1}(\mathbf{r}) + \epsilon(t) \, n_{0,N}(\mathbf{r})}.$
- Determine exact static KS potential for this ground-state density.
- Use correlation part of the static KS potential in the TDKS scheme.

N-Adiabatic approximation

Good results for "total ionization" = number of lost electrons:

[A. de Wijn, M.L., S. Kümmel, Europhys. Lett. 84, 43001 (2008)]

Adiabatic approximation for pair correlation function

For further improvement of ionization probabilities, better functionals are needed for these observables:

$$p(\text{He}^+) = 2p(t)[1 - p(t)] - I_c$$

 $p(\text{He}^{++}) = [1 - p(t)]^2 + \frac{1}{2}I_c$

with

$$p(t) = \int_A d^3r \, |\varphi(\mathbf{r}, t)|^2$$

and the correlation integral

$$I_{\rm c} = \int_A d^3r_1 \int_A d^3r_2 \, n(\mathbf{r}_1, t) n(\mathbf{r}_2, t) g_{\rm c}(\mathbf{r}_1, \mathbf{r}_2, t),$$

where

$$g_{\rm c}(\mathbf{r}_1, \mathbf{r}_2, t) = \frac{2|\Psi(\mathbf{r}_1, \mathbf{r}_2, t)|^2}{n(\mathbf{r}_1, t)n(\mathbf{r}_2, t)} - \frac{1}{2}$$

is the correlation part of the pair correlation function.

Adiabatic approximation for pair correlation function

Adiabatic approximation for pair correlation function

[F. Wilken and D. Bauer, PRL 97, 203001 (2006)]:

$$g_{c}^{A}(\mathbf{r}_{1}, \mathbf{r}_{2}, t) = -\frac{1}{2}, \qquad N_{\text{bound}} < 1$$

$$g_{c}^{A}(\mathbf{r}_{1}, \mathbf{r}_{2}, t) = \frac{\rho^{A}(\mathbf{r}_{1}, \mathbf{r}_{2}, t)}{n^{A}(\mathbf{r}_{1}, t)n^{A}(\mathbf{r}_{2}, t)} - \frac{1}{2}, \qquad 1 \le N_{\text{bound}} \le 2$$

with

$$n^{\mathbf{A}}(\mathbf{r},t) = (1-\epsilon)n_1(\mathbf{r}) + \epsilon n_2(\mathbf{r}_2), \qquad 1 \le N_{\text{bound}} \le 2$$
$$\rho^{\mathbf{A}}(\mathbf{r}_1,\mathbf{r}_2,t) = 2(1-\epsilon)|\Psi_1(\mathbf{r}_1,\mathbf{r}_2)|^2 + 2\epsilon|\Psi_2(\mathbf{r}_1,\mathbf{r}_2)|^2, \quad 1 \le N_{\text{bound}} \le 2$$

 $\Psi_j = {
m ground\ state\ of\ j\ -particle\ system},$ $n_j = {
m ground\ -state\ density\ of\ j\ -particle\ system}$

$$N_{\rm bound} = 1 + \epsilon$$

Adiabatic approximation for pair correlation function

Good results for single and double ionization

Exact adiabatic potential

- For given density n, construct the external potential $v_{\rm ext}^0$ that yields n as ground state density of an interacting system.
- Construct the potential $v_{\rm KS}^0$ that yields n as ground state densitites of a noninteracting system.
- Obtain adiabatic exchange correlation potential as

$$v_{\rm xc}^{\rm adia} = v_{\rm KS}^{\rm adia} - v_{\rm ext}^{\rm adia} - v_{\rm H}.$$

Exact adiabatic potential

Excellent agreement with exact xc potential:

M. Thiele, E.K.U. Gross, S. Kümmel, Phys. Rev. Lett. 100, 153004 (2008)

Multicomponent problems

Multicomponent TDDFT describes quantum mechanical motion of nuclei and electrons with nuclear and electronic KS potentials:

$$i\frac{\partial}{\partial t}\varphi_k(\mathbf{r},t) = \left(-\frac{1}{2}\nabla^2 + v_{\mathrm{KS}}^{\mathrm{el}}(\mathbf{r},t)\right)\varphi_k(\mathbf{r},t) \qquad \text{for electrons}$$

$$i\frac{\partial}{\partial t}\chi(\underline{\mathbf{R}},t) = \left(-\sum_{\alpha}\frac{1}{2M_{\alpha}}\nabla_{\alpha}^2 + v_{\mathrm{KS}}^{\mathrm{nuc}}(\underline{\mathbf{R}},t)\right)\chi(\underline{\mathbf{R}},t) \qquad \text{for nuclei}$$

with electron density

$$n(\mathbf{r},t) = \sum_{k} |\varphi_k(\mathbf{r},t)|^2$$

and nuclear probability distribution $\Gamma(\mathbf{R},t) = |\chi(\mathbf{R},t)|^2$.

$$\Gamma(\mathbf{R},t) = |\chi(\mathbf{R},t)|^2$$

Advantages: nonperturbative, non-Born-Oppenheimer theory Disadvantage: so far no practical functional

Idea: calculate exact KS potentials for a model system

A 1D model H_2^+ molecular ion

One electron moving along the molecular axis, parallel to the external field:

$$H(t) = -\frac{1}{2} \frac{\partial^2}{\partial z^2} - \frac{\partial^2}{M \partial R^2} - \frac{1}{\sqrt{(z - R/2)^2 + 1}} - \frac{1}{\sqrt{(z + R/2)^2 + 1}} + \frac{1}{R} + E(t)z$$

[Kulander, Mies, and Schafer, PRA 53, 2562 (1996)]

with z = electron coordinate, R = internuclear distance.

Calculation of KS potentials for electron and internuclear coordinate for various types of dynamics:

- Wave-packet motion on one Born-Oppenheimer surface
- Superposition of electronic states
- System in the presence of a static electric field

A 1D model H_2^+ molecular ion

A 1D model H_2^+ molecular ion

Nuclear KS potential for wave-packet dynamics on one BO potential

A 1D model H_2^+ molecular ion

Nuclear KS potential for superposition of two electronic states

A 1D model H_2^+ molecular ion

Nuclear KS potential for system in static electric field

Molecules - the dissociation problem

H₂ in Hartree-Fock or in conventional DFT implementations: two identical delocalized orbitals at large distances.

→ wrong prediction of ground-state energy due to spurious Hartree energy, hard to correct in DFT.

[see Baerends PRL 87, 133004 (2001) for solution in orbital-DFT]

Consider high-harmonic generation in molecules at large internuclear distances. Then a transfer mechansim is possible:

Ionization and recombination at different atomic sites

[P. Moreno et al., PRA 55, R1593 (1997), R. Kopold et al., PRA 58, 4022 (1998)]

predicted cutoff: up to $8U_{
m p}$

... but only possible if the initial state consists of two coherent pieces at the two centers, as in H_2^+ .

To show the difference between localized and delocalized states, we study 1D H_2^+ described by

$$H(t) = -\frac{1}{2} \frac{\partial^2}{\partial z^2} - \frac{1}{\sqrt{(z-R/2)^2+2}} - \frac{1}{\sqrt{(z+R/2)^2+2}} + E(t)z$$

and 1D H₂ described by

$$H(t) = -\frac{1}{2} \frac{\partial^2}{\partial z_1^2} - \frac{1}{2} \frac{\partial^2}{\partial z_2^2} - \frac{1}{\sqrt{(z_1 - R/2)^2 + 2}} - \frac{1}{\sqrt{(z_1 + R/2)^2 + 2}} - \frac{1}{\sqrt{(z_1 + R/2)^2 + 2}} - \frac{1}{\sqrt{(z_2 - R/2)^2 + 2}} - \frac{1}{\sqrt{(z_2 - R/2)^2 + 2}} + \frac{1}{\sqrt{(z_2 - z_1)^2 + 1.621}} + E(t)z.$$

Comparison of harmonics in H_2^+ and H_2 (R=150 a.u., 800 nm, 9.35×10^{13} W/cm²)

Vertical lines indicate the cutoffs expected from classical modeling.

Conventional TDDFT for H₂ will produce situations like this:

The (unphysical) oscillations are similar to those taking place in H_2^+ and give rise to an unphysical 8 $U_{\rm p}$ cutoff.

Numerical issues with TDKS and TDSE for strong fields

Main problem: large electron excursions - hundreds of a.u.

→ need for large grids

Alternatively, small grid with absorbing boundary, i.e.

- repeated multiplication with an absorbing mask function
- ullet or addition of negative imaginary potential, because $\exp(-iV_{
 m opt}dt)=\exp(-|V_{
 m opt}|dt)$.

Numerical issues with TDKS and TDSE for strong fields

Main problem: large electron excursions - hundreds of a.u.

→ need for large grids

Alternatively, small grid with absorbing boundary, i.e.

- repeated multiplication with an absorbing mask function
- ullet or addition of negative imaginary potential, because $\exp(-iV_{
 m opt}dt)=\exp(-|V_{
 m opt}|dt)$.

Problems with absorbing boundaries:

- in TDKS scheme: distortion of the KS potential due to nonlocal Hartree functional,
- in many-body TDSE: absorption of particle density not only near the boundary but also in the middle, due to correlation

Absorbing boundaries

Absorption in Hartree-Fock calculation (1D He, dc field)

[A. de Wijn, S. Kümmel, M.L., J. Comput. Phys. 226, 89 (2007)]

Missing repulsion leads to faster ionization!

Absorbing boundaries

In many-body TDSE: mask absorbs not individual particles, but parts of the many-body wave function

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N)$$

when

$$|\mathbf{r}_j| > R_{\text{mask}}$$

for *one of* the \mathbf{r}_j . Other \mathbf{r}_k , $k \neq j$, are usually small.

→ Density is absorbed not only at the boundary.

Absorbing boundaries

Absorption in exact calculation (1D He, dc field)

Density around the origin is absorbed!

Conclusions

- Derivative discontinuity plays a key role in ionization processes.
- (Nonlocal) adiabatic approximations open up new perspectives.
- The dissociation problem remains to be solved in TDDFT.
- Absorbing boundaries should be used with care in TDDFT.