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Outline

Model systems and TDDFT

• Double ionization of Helium

• Adiabatic approximations

• Multicomponent TDDFT

• The dissociation problem revisited

• Numerical issues

– p.2



Nonsequential double ionization of Helium

Walker et al., PRL 73, 1227 (1994)

Experimental observations:

• double ionization orders of magnitude
larger than expected from sequential
ionization

“sequential” ionization probability means:
pseq = p(He → He+) p(He+ → He++)

• He2+ knee at He+ saturation intensity
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Nonsequential double ionization of Helium

Walker et al., PRL 73, 1227 (1994)

Experimental observations:

• double ionization orders of magnitude
larger than expected from sequential
ionization

“sequential” ionization probability means:
pseq = p(He → He+) p(He+ → He++)

• He2+ knee at He+ saturation intensity

Theory: Knee is only reproduced by

• exact solution of the two-body TDSE

• S-matrix theory (Becker and Faisal)

• later: TDDFT with derivative discontinuity
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A one-dimensional two-electron model atom

Two electrons along a line parallel to the laser polarization
axis:

H(t) = − 1
2

∂2

∂z2
1

− 1
2

∂2

∂z2
2

− 2√
z2
1+1

− 2√
z2
2+1

+ 1√
(z1−z2)2+1

+ E(t)(z1 + z2)

[Grobe and Eberly, PRA 48, 4664 (1993)]

All particle-particle interactions are soft-core potentials with
Coulomb tail (gives Rydberg series).

The TDSE can be solved numerically exactly, so the model is
useful to obtain

• qualitative insight into ionization mechanisms,

• exact results for comparison with DFT approaches.
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Calculation of ionization probabilities

Box integration: consider electron as free when it is farther
from the nucleus than some given distance, e.g. a = 5 a.u.:

p(He) =
a
∫

−a

dz1

a
∫

−a

dz2| Ψ(z1, z2)|2

p(He+) = 2
a
∫

−a

dz1

∫

|z2|>a

dz2 |Ψ(z1, z2)|2

p(He++) =
∫

|z1|>a

dz1

∫

|z2|>a

dz2| Ψ(z1, z2)|2

Only approximate, but useful for comparison with DFT results.
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Calculation of ionization probabilitied

1D Model yields knee structure for double ionization.

[Dahlen and van Leeuwen, PRA 64, 023405 (2001)]
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Mechanism of nonsequential double ionization

Mechanisms under discussion were

• rescattering

• shake-off (relevant mechanism for high photon energies)

• collective tunneling

TDSE contains all information, but difficult to extract.
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Mechanism of nonsequential double ionization

Evolution in two-electron momentum space (λ = 780 nm, I = 1015 W/cm2)
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Mechanism of nonsequential double ionization

Numerical experiment to test ionization mechanism
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[M.L., E.K.U. Gross, V. Engel, J. Phys. B 33, 433 (2000)]

→ excludes shake-off or collective tunneling.
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Mechanism of nonsequential double ionization

Wigner function evolution for el. center of mass provides classical picture:

[M.L., E.K.U. Gross, V. Engel, PRL 85, 4707 (2000)]
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Time-dependent density functional theory

• Runge-Gross theorem:
The density n(r, t) determines the external potential uniquely (up to a time
dependent constant).

• Time-dependent Kohn-Sham (KS) scheme:
Ficticious system of non-interacting particles described by orbitals ϕk

n(r, t) =
∑N

k=1 |ϕk(r, t)|2
i ∂
∂t

ϕk(r, t) =
(

− 1
2∇2 + vKS(r, t)

)

ϕk(r, t)

vKS[n]r(, t) = vext(r, t) +
∫ n(r′,t)

|r−r′| + vxc[n](r, t)

• Physical observables are calculated as functionals of the density.
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TDDFT for two electrons

For Helium (two electrons in a singlet state), there is only one
KS orbital

ϕ↑(r, t) = ϕ↓(r, t) = ϕ(r, t)

and
n(r, t) = 2|ϕ(r, t)|2.

The exact exchange potential is
vx(r, t) = −1

2
vH(r, t),

and furthermore

x-only TDDFT = TD Hartree-Fock.
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Usual approximations

• Simple expressions for the xc potential: adiabatic LDA, LDA-SIC, TDKLI,
...

• Mean-field approach for ionization probabilities:
Assume Ψ(r1, r2, t) ≈ Kohn-Sham state

⇒ p(He) =
(∫

A
d3r|ϕ(r, t)|2

)2
, p(He++) =

(

1 −
∫

A
d3r|ϕ(r, t)|2

)2

→ No success to reproduce the knee

Underestimation of single ionization

However, inserting the exact density into mean-field functional reproduces
a knee.

[Lappas and v. Leeuwen, J. Phys. B 31, L249 (1998)]
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Calculation of exact xc potential

• One-dimensional model system
H(t) = − 1

2
∂2

∂z2
1

− 1
2

∂2

∂z2
2

− 2√
z2
1+1

− 2√
z2
2+1

+ 1√
(z1−z2)2+1

+E(t)(z1 +z2)

• Solve time-dependent Schrödinger equation and calculate exact
time-dependent density n(z, t)
and current j(z, t)

• Calculate exact KS orbital ϕ(z, t) =
√

n(z, t)/2 exp (iα(z, t))

with phase α from current density j = 1
i
(ϕ∗∂zϕ − c.c.) = n∂zα

• Calculate “exact” KS potential by inversion of the split-operator
propagator: ϕ(z, t + δt) = e−iTsδte−2ivKSδte−iTsδtϕ(z, t − δt)

→ vKS(z, t) = − ~

2δt
arcsinℑ e+iTsδt/~ϕ(z,t+δt)

e−iTsδt/~ϕ(z,t−δt)
+ const
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The Kohn-Sham current density

Question:

Is KS current density = current density in the interacting system?
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The Kohn-Sham current density

Question:

Is KS current density = current density in the interacting system?

Continuity equation must hold in both systems:

ṅ + ∇j = 0

ṅKS + ∇jKS = 0

Because densities n, nKS are equal, we have ∇j = ∇jKS .

In general, it is unclear whether j = jKS, but in 1D, we have

∂zj = ∂zjKS,

and for finite systems, we have j → 0 for |z| → ∞.

Therefore j = jKS in 1D finite systems .
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Exact xc potential for a model system

To avoid numerical difficulties: choose static field

E = 0.14 a.u.
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Exact xc potential for a model system

Numerical results
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M.L., S. Kümmel, PRL 94, 143003 (2005)

→ x-only DFT gives • good description of initial state

• wrong time-evolution
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Exact xc potential for a model system

Relation to derivative discontinuities in static DFT
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Exact xc potential for a model system

Exact static potentials for various fractional particle numbers
N = 1 + ǫ,

using the ground-state density n(z) = (1 − ǫ)n1(z) + ǫ n2(z)

-20 -10 0 10 20
z (a.u.)

0.0

0.2

0.4

0.6

0.8

1.0

v c , 
v hx

c (
a.

u.
)

-20 -10 0 10 20
z (a.u.)

-20 -10 0 10 20
z (a.u.)

(a) (b) (c)

(a) N=1.5 (b) N=1.1 (c) N=1.0001

solid: vHxc,
dashed: vc

– p.19



Derivative discontinuity

Fractional particle numbers in static DFT:

xc potential jumps by ∆xc when the particle number passes
through an integer.

Interpretation of time-dependent results:

In ionization a small fraction of an electron is ejected; if the
process is adiabatic, a ground-state with fractional number of
bound electrons is left.

Difficulty: the discontinuity around N = 1 is not in the
exchange but in the correlation potential.
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Derivative discontinuity

Suitable quantity for comparison of DFT and exact
calculations:

the number of bound electrons Nbound =
∫

V
n(r) d3r

with an appropriate region V around the nucleus.

Advantage compared to ionization probabilities: no problems
with expressing the functional.
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Simple guess for a functional

KS potential should retain its initial repulsive character.
→ Introduce weighting factor to compensate for loss of electron density:

vHxc(r, t) = 2
Nbound

vHx(r, t), Nbound > 1

vHxc(r, t) = 0, Nbound ≤ 1
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Simple guess for a functional

KS potential should retain its initial repulsive character.
→ Introduce weighting factor to compensate for loss of electron density:

vHxc(r, t) = 2
Nbound

vHx(r, t), Nbound > 1

vHxc(r, t) = 0, Nbound ≤ 1
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Ionization in a laser pulse

λ = 780 nm, 8 cycles
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N-Adiabatic approximation

TDKS scheme with the following additions:

• Determine at every time the (fractional) number

Nbound = N − 1 + ǫ of bound electrons.

• Construct ground-state density for this fractional particle

number: n0(r) = [1 − ǫ(t)]n0,N−1(r) + ǫ(t)n0,N (r) .

• Determine exact static KS potential for this ground-state

density.

• Use correlation part of the static KS potential in the TDKS

scheme.
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N-Adiabatic approximation

Good results for “total ionization” = number of lost electrons:

[A. de Wijn, M.L., S. Kümmel, Europhys. Lett. 84, 43001 (2008)]
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Adiabatic approximation for pair correlation function

For further improvement of ionization probabilities, better

functionals are needed for these observables:

p(He+) = 2p(t)[1 − p(t)] − Ic

p(He++) = [1 − p(t)]2 + 1
2Ic

with

p(t) =
∫

A d3r |ϕ(r, t)|2

and the correlation integral

Ic =
∫

A d3r1

∫

A d3r2 n(r1, t)n(r2, t)gc(r1, r2, t),

where

gc(r1, r2, t) = 2|Ψ(r1,r2,t)|2

n(r1,t)n(r2,t) −
1
2

is the correlation part of the pair correlation function.
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Adiabatic approximation for pair correlation function

Adiabatic approximation for pair correlation function
[F. Wilken and D. Bauer, PRL 97, 203001 (2006)]:

gA
c (r1, r2, t) = − 1

2 , Nbound < 1

gA
c (r1, r2, t) = ρA(r1,r2,t)

nA(r1,t)nA(r2,t)
− 1

2 , 1 ≤ Nbound ≤ 2

with

nA(r, t) = (1 − ǫ)n1(r) + ǫn2(r2), 1 ≤ Nbound ≤ 2

ρA(r1, r2, t) = 2(1 − ǫ)|Ψ1(r1, r2)|2 + 2ǫ|Ψ2(r1, r2)|2, 1 ≤ Nbound ≤ 2

Ψj = ground state of j-particle system,
nj = ground-state density of j-particle system

Nbound = 1 + ǫ
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Adiabatic approximation for pair correlation function

Good results for single and double ionization
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Exact adiabatic potential

• For given density n, construct the external potential v0
ext that yields n

as ground state density of an interacting system.

• Construct the potential v0
KS that yields n as ground state densitites of

a noninteracting system.

• Obtain adiabatic exchange correlation potential as

vadia
xc = vadia

KS − vadia
ext − vH.
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Exact adiabatic potential

Excellent agreement with exact xc potential:

t = 0 t = 21.5 a.u. t = 43 a.u.

M. Thiele, E.K.U. Gross, S. Kümmel, Phys. Rev. Lett. 100, 153004 (2008)
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Multicomponent problems

Multicomponent TDDFT describes quantum mechanical motion of nuclei
and electrons with nuclear and electronic KS potentials:

i
∂

∂t
ϕk(r, t) =

„

−
1

2
∇2 + vel

KS
(r, t)

«

ϕk(r, t) for electrons

i
∂

∂t
χ(R, t) =

 

−
X

α

1

2Mα

∇2
α + vnuc

KS
(R, t)

!

χ(R, t) for nuclei

with electron density n(r, t) =
∑

k

|ϕk(r, t)|2

and nuclear probability distribution Γ(R, t) = |χ(R, t)|2.

Advantages: nonperturbative, non-Born-Oppenheimer theory

Disadvantage: so far no practical functional

Idea: calculate exact KS potentials for a model system
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A 1D model H+
2 molecular ion

One electron moving along the molecular axis, parallel to the

external field:

H(t) = −1
2

∂2

∂z2 − ∂2

M∂R2 − 1√
(z−R/2)2+1

− 1√
(z+R/2)2+1

+ 1
R + E(t)z

[Kulander, Mies, and Schafer, PRA 53, 2562 (1996)]

with z = electron coordinate, R = internuclear distance.

Calculation of KS potentials for electron and internuclear coordinate

for various types of dynamics:

• Wave-packet motion on one Born-Oppenheimer surface

• Superposition of electronic states

• System in the presence of a static electric field
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A 1D model H+
2 molecular ion
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A 1D model H+
2 molecular ion

Nuclear KS potential for wave-packet dynamics on one BO potential
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A 1D model H+
2 molecular ion

Nuclear KS potential for superposition of two electronic states
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A 1D model H+
2 molecular ion

Nuclear KS potential for system in static electric field
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Molecules - the dissociation problem

H2 in Hartree-Fock or in conventional DFT implementations: two

identical delocalized orbitals at large distances.

−10 −5 0 5 10
z (a.u.)

−10 −5 0 5 10

φ1
φ1

→ wrong prediction of ground-state energy due to spurious Hartree

energy, hard to correct in DFT.

[see Baerends PRL 87, 133004 (2001) for solution in orbital-DFT]
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The dissociation problem in high-harmonic generation

Consider high-harmonic generation in molecules at large

internuclear distances. Then a transfer mechansim is possible:
electron

photon

Ionization and recombination at different atomic sites

[P. Moreno et al., PRA 55, R1593 (1997), R. Kopold et al., PRA 58, 4022 (1998)]

predicted cutoff: up to 8Up

... but only possible if the initial state consists of two coherent pieces

at the two centers, as in H+
2 .
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The dissociation problem in high-harmonic generation

To show the difference between localized and delocalized states,

we study 1D H+
2 described by

H(t) = −1
2

∂2

∂z2 − 1√
(z−R/2)2+2

− 1√
(z+R/2)2+2

+ E(t)z

and 1D H2 described by

H(t) = −1

2

∂2

∂z2
1

− 1

2

∂2

∂z2
2

− 1
√

(z1 − R/2)2 + 2
− 1

√

(z1 + R/2)2 + 2

− 1
√

(z2 − R/2)2 + 2
− 1

√

(z2 + R/2)2 + 2

+
1

√

(z2 − z1)2 + 1.621
+ E(t)z.

– p.39



The dissociation problem in high-harmonic generation

Comparison of harmonics in H+
2 and H2

(R=150 a.u., 800 nm, 9.35×1013 W/cm2)
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Vertical lines indicate the cutoffs expected from classical modeling.
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The dissociation problem in high-harmonic generation

Conventional TDDFT for H2 will produce situations like this:

→

The (unphysical) oscillations are similar to those taking place in H+
2

and give rise to an unphysical 8 Up cutoff.
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Numerical issues with TDKS and TDSE for strong fields

Main problem: large electron excursions - hundreds of a.u.

→ need for large grids

Alternatively, small grid with absorbing boundary, i.e.

• repeated multiplication with an absorbing mask function

• or addition of negative imaginary potential,

because exp(−iVoptdt) = exp(−|Vopt|dt).

– p.42



Numerical issues with TDKS and TDSE for strong fields

Main problem: large electron excursions - hundreds of a.u.

→ need for large grids

Alternatively, small grid with absorbing boundary, i.e.

• repeated multiplication with an absorbing mask function

• or addition of negative imaginary potential,

because exp(−iVoptdt) = exp(−|Vopt|dt).

Problems with absorbing boundaries:

• in TDKS scheme: distortion of the KS potential due to nonlocal

Hartree functional,

• in many-body TDSE: absorption of particle density not only

near the boundary but also in the middle, due to correlation
– p.42



Absorbing boundaries

Absorption in Hartree-Fock calculation (1D He, dc field)
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[A. de Wijn, S. Kümmel, M.L., J. Comput. Phys. 226, 89 (2007)]

Missing repulsion leads to faster ionization!
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Absorbing boundaries

In many-body TDSE: mask absorbs not individual particles, but

parts of the many-body wave function

Ψ(r1, . . . , rN )

when

|rj | > Rmask

for one of the rj . Other rk, k 6= j, are usually small.

→ Density is absorbed not only at the boundary.
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Absorbing boundaries

Absorption in exact calculation (1D He, dc field)
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Density around the origin is absorbed!
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Conclusions

• Derivative discontinuity plays a key role in ionization
processes.

• (Nonlocal) adiabatic approximations open up new
perspectives.

• The dissociation problem remains to be solved in TDDFT.

• Absorbing boundaries should be used with care in
TDDFT.

– p.46
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