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We present fully ab initio calculations of van der Waals coefficients for two different situations: �i� the
interaction between hydrogenated silicon clusters and �ii� the interactions between these nanostructures and a
nonmetallic surface �a silicon or a silicon carbide surface�. The methods used are very efficient and allow the
calculation of systems containing hundreds of atoms. The results obtained are further analyzed and understood
with the help of simple models. These models can be of interest for molecular-dynamics simulations of silicon
nanostructures on surfaces, where they can give a very fast yet sufficiently accurate determination of the van
der Waals interaction at large separations.
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I. INTRODUCTION

The van der Waals interaction is a common presence in
the worlds of physics, chemistry, and biology.1 Studied for
more than a century,2 it is a dispersive force that, being weak
at short distances, becomes the dominant attraction between
neutral bodies at large separations. It results from the non-
zero multipole-multipole attraction stemming from transient
quantum fluctuations. It is the interplay between the electro-
static and dispersive interactions that determines many inter-
esting phenomena in nature, even in the macroscopic world.
For example, it is van der Waals interactions that are respon-
sible for the remarkable ability of geckos to hold to
surfaces.3 A significant example of application of van der
Waals interactions comes from some operating modes of
atomic force microscopes.4

However, the realm of van der Waals forces, being quan-
tum in nature, is the world of atoms and molecules—the
nanoworld. In fact, these forces determine the structure of
DNA molecules, the folding and dynamics of proteins, the
adsorption of atoms, molecules, or nanostructures on sur-
faces, etc. Moreover, the van der Waals atom-surface inter-
action has also been recently studied due to their influence
on the quantum reflection of ultracold atoms on surfaces.5 In
fact, the upsurge of interest on Bose-Einstein condensation
of ultracold atoms confined in magnetic traps6 near a surface
should fuel research on atom-surface dispersion interactions,
since they are key factors for the stability of the condensate.
They are also key ingredients in the building and functioning
of many of the systems relevant for the emerging fields of
nanotechnology and biotechnology. For example, their effect
was shown to have a profound influence on the oscillatory
behavior of microstructures when surfaces are in close prox-
imity �100 nm�.7

In this context, the purpose of this paper is to present fully
ab initio calculations of the van der Waals coefficients for the
interaction between nanostructures �silicon clusters, in par-

ticular� and between these nanostructures and surfaces.
These results are then used to formulate simple models that
describe with enough precision the van der Waals interac-
tions. The models are important, as they can be the starting
point for, e.g., molecular-dynamics simulations of the behav-
ior of silicon nanostructures at surfaces. We will be looking
at large separations when the overlap between the electronic
clouds is negligible. At shorter distances, the situation is con-
siderably more complicated and no satisfying description has
emerged yet. Typically, van der Waals interactions decay
with an inverse power of the distance between the two bod-
ies under consideration; the exponent depends on their di-
mensionality or their metallic character.8 We are interested in
two specific cases:

(A) The interaction between two finite nanostructures,
namely, atomic clusters of silicon, saturated with hydrogen.
We restrict ourselves to the more interesting nonretarded re-
gime, i.e., when the time that it takes for the photons to
travel between the two molecules is negligible. In this case,
the van der Waals interaction energy has an expansion with
respect to the inverse of the intermolecular distance �1 /R� of
the form

�E�R� = − �
n=6

�
Cn

Rn �1�

in terms of the Hamaker constants Cn.1,9 The first term C6 for
a pair of molecules A and B, averaged over all possible ori-
entations, can be obtained through the relation �atomic units
will be used hereafter�

C6
AB =

3

�
�

0

�

du ��A��iu���B��iu� , �2�

where ��X��iu� is the average of the dipole polarizability ten-
sor of molecule X, ��X�, evaluated at the imaginary frequency
iu,
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��X��iu� =
1

3
Tr���X��iu�� . �3�

The higher order terms in expansion �1� can in a similar way
be written in terms of higher order polarizability tensors. For
example, the C8 coefficient will depend on the dipole-
quadrupole dynamic polarizability �see, e.g., Ref. 10�. In this
paper we will focus on the leading term of the expansion,
i.e., the Hamaker constant C6.

(B) The interaction between a nanostructure and a sur-
face. Here we will focus on silicon and silicon carbide sur-
faces. In this case, the leading term of the expansion of the
van der Waals energy as a function of the distance Z between
the cluster and the surface is proportional to Z−3. This fact
was first established by Lennard-Jones,11 who used a model
with a perfectly reflecting metal. The theory was later devel-
oped by Casimir and Polder12 and by Lifshitz.13 For a wide
range of particle-substrate distances �from approximately 1
to even 103 nm�, the interaction energy is given by

�E�Z� = −
C3

�Z − Z0�3 , �4�

where Z0 is a “reference plane” and C3 is the Lifshitz coef-
ficient. This coefficient can be calculated from the dynamical
polarizability of the cluster, ��iu�, and the macroscopic di-
electric function of the bulk material, �M�iu�, both evaluated
at imaginary frequencies, iu,

C3 =
1

4�
�

0

�

du ��iu�
�M�iu� − 1

�M�iu� + 1
. �5�

Note that C3 is expressed only in terms of quantities calcu-
lated for the bulk crystal. This expression is a general result,
also valid for metallic surfaces. The quantity that depends on
the characteristics of the surface is the position of the refer-
ence plane Z0. However, for semiconducting surfaces, it can
be shown14 that, in absence of local-field effects, Z0 is equal
to a /2, where a is the interplanar distance. Moreover, it is
known that even relatively large local-field corrections give
rise to rather small shifts of the reference plane.14 Note, how-
ever, that the position of the reference plane Z0 is a more
delicate issue in the case of a metal, as positioning the ref-
erence plane at a distance of a /2 from the surface can lead to
significant errors in the interaction energy �i.e., about 30%
for a noble-metal surface�.14 Further analysis to determine
the dependence of van der Waals interactions on the surface
response is under progress.

It is interesting to remark that it took a long time to verify
experimentally the predicted Z−3 dependence. Although this
term dominates a very wide distance region, in the short-
distance regime it is only a tail of the particle potential
whose minimum determines the adsorption. The first precise
measurement of the van der Waals coupling between an atom
and a surface was reported in Ref. 15; later on some more
experiments have followed.16 The experimental difficulties
are, in fact, in pair with the theoretical ones, since fully ab
initio calculations are also challenging. Most of the calcula-
tions reported in the literature17,18 are generally limited to
atoms or very small molecules, and the bulk detailed micro-

scopic structure is replaced by some model �e.g., the stabi-
lized jellium model for metals�. An interesting approach con-
sists in modeling the molecular polarizability using the form
of the long-wavelength density response of a homogeneous
electron gas. The van der Waals interaction is thus efficiently
described by the ground-state electron densities of the inter-
acting species, obtaining C6 coefficients that on average
deviate 9% from those obtained by time-dependent density-
functional theory �TDDFT� calculations.19 All approxima-
tions were justified by the authors by the difficulty of treating
medium size molecules within a full ab initio TDDFT ap-
proach.

It is the purpose of our work to demonstrate that current
ab initio techniques permit the calculation of the van der
Waals coefficients for large nanostructures interacting with
realistically described surfaces. The rest of this paper is
structured as follows: In Sec. II we review the methods used
to evaluate the dynamical polarizabilities and the dielectric
functions at imaginary frequency; in Sec. III we present the
results of our ab initio calculations, which are then further
analyzed in Sec. IV using some simple models. Finally, we
draw some conclusions in Sec. V.

II. METHODS

The main ingredients to evaluate the van der Waals coef-
ficients are therefore the electronic polarizability � of the
cluster and the dielectric constant of the bulk material �, both
evaluated at imaginary frequencies. The computational meth-
ods and the problems involved in the calculation of these two
quantities are quite different, so we will discuss them sepa-
rately.

A. Dynamical polarizabilities

In principle, one can obtain the dynamical polarizabilities
by making use of any quantum-chemistry theory capable of
handling time-dependent �TD� perturbations. As the nano-
structures we are interested in can be fairly large, we choose
the TD extension of density-functional theory �DFT�, since
this approach provides an excellent compromise between ac-
curacy and feasibility. During the past decade, TDDFT �Ref.
20� has become one of the most important tools to study
electronic excitations of molecular systems, especially for
medium and large systems where it is often the only feasible
alternative.

Several different numerical approaches can be found in
the literature to calculate � at imaginary frequencies within
TDDFT. For example, linear-response theory can be em-
ployed to calculate the density-density response function �,
from which � directly follows

�ij�	� =� d3r� d3r�ri��r,r�,	�rj�. �6�

This approach is quite common and has been used for the
calculation of the C6 coefficients of molecules and clusters.21

Alternatively, one can work in real time: By propagating the
Kohn-Sham �KS� equations in real time, it is immediate to
obtain ��t�. A Laplace transformation of this quantity yields
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��iu� and therefore the Hamaker constant C6. Recently, some
of us have shown22 how this procedure can effectively pro-
vide C6 coefficients of large molecules. A slightly different
approach is the polarization propagation technique, whose
extension to imaginary frequencies has been used to compute
C6 coefficients.23 For very large systems, Banerjee and
Harbola24 proposed the use of orbital free TDDFT, providing
satisfactory results for large sodium clusters.

In this paper, we use an alternative scheme based on the
solution of a Sternheimer equation.25 It avoids the use of
empty states, therefore providing a quite good scaling �N2�
with the number of atoms. The real-time propagation tech-
nique mentioned above has a similar scaling, but we find the
prefactor of the Sternheimer approach25 to be smaller. This
method has already been used for the calculation of many
response properties, such as atomic vibrations, electron-
phonon coupling, magnetic response, etc.26 In the domain of
optical response, it has been mainly used for static response,
although a few calculations at finite �real� frequency have
appeared.27

We have implemented the Sternheimer equation25 at
imaginary frequency in the real-space code OCTOPUS.28 The
details are explained in Ref. 29—although in that case the
equation is solved for real frequencies. A generalization to
imaginary frequencies is straightforward. The efficiency of
the Sternheimer approach25 is illustrated by the size of the
clusters studied in this paper: up to Si172H120, i.e.,
�300 atoms, computed with relatively modest computer
systems. Note that, for these systems, the time required for
the evaluation of the van der Waals coefficients is of the
same order as the time required for the ground-state calcula-
tion.

B. Dielectric constant

The electronic band structure of bulk semiconductors and
insulators, which is the starting point to obtain the dielectric
functions, can nowadays be accurately computed with ab
initio methods.30 Much work has been done in the past years
to determine which approximations allow a proper descrip-
tion of electron-electron and electron-hole interactions,
which is essential to obtain optical functions �at real frequen-
cies� in agreement with experimental data.31

The inverse microscopic dielectric function �−1 of a peri-
odic system is related to the response function �,

�−1�q,G,G�,	� = 
G,G� + v�q,G���q,G,G�,	� , �7�

where q is a vector in the Brillouin zone, G is a reciprocal-
lattice vector, and v is the bare Coulomb interaction. The
response function � obeys the matrix equation,

� = �0 + �0�v + fxc�� , �8�

with �0 being the independent-particle Kohn-Sham response
function and fxc the so-called exchange correlation �xc� ker-
nel. The macroscopic dielectric function �M can be readily
obtained from the microscopic �,

�M�	� = lim
q→0

1

�−1�q,G = 0,G� = 0,	�
. �9�

The simplest approximation that yields the dielectric func-
tion consists in applying Fermi’s golden rule. In this approxi-
mation, the optical spectrum is calculated as a sum of inde-
pendent transitions between KS or quasiparticle states. This
poor man’s approach is known to exhibit severe shortcom-
ings compared to experiments.32 The next step is the so-
called random-phase approximation �RPA�, which includes
the effects due to the variation of the Hartree potential upon
excitation, while fxc is set to zero. Unfortunately, the RPA
does not lead to any significant improvement for most solids,
especially if there are no particularly pronounced polarizable
inhomogeneities in the charge density. Replacing the KS en-
ergies with the quasiparticle energies does not solve the
problem: the peak positions are usually overcorrected and
the oscillator strength is not modified.

It is the neglect of variations of the xc potential, which
include the effect of the electron-hole Coulomb interaction,
which is responsible for an overall disagreement in the ab-
sorption strength—in particular for the failure to reproduce
continuum and bound excitons. Unfortunately, the adiabatic
time-dependent local-density approximation �TDLDA� for
the xc kernel in the case of solids is not sufficient to yield
good dielectric functions. The reason for this failure can be
traced back to the short-range nature of the TDLDA fxc,
while the “exact” fxc is expected to be long ranged,31 decay-
ing in momentum space as 1 /q2.

A class of kernels that was shown to yield good results is
those derived from the Bethe-Salpeter equation �BSE�,31,33,34

used together with the quasiparticle band structure. A
parameter-free expression, the “nanoquanta kernel,” was ob-
tained in several different ways �for a detailed discussion we
refer the reader to Ref. 34 and references therein�. Although
involving a potentially reduced computational effort with re-
spect to the BSE, these calculations are still significantly
more cumbersome than those within the RPA or the TDLDA.
To keep the computational cost as low as possible, in many
cases it is enough to use simplified versions of this kernel. It
was shown that the nanoquanta kernel has the asymptotic
form of a long-range contribution �LRC�,35,36

f xc
static�q� = −

�static

q2 , �10�

where �static is a material dependent parameter, which can be
related to the dielectric constant. This long-range contribu-
tion alone is sufficient to simulate the strong continuum ex-
citon effect in the absorption spectrum and in the refraction
index of several simple semiconductors, such as bulk silicon
or GaAs, provided that quasiparticle energies are used as a
starting point. A dynamical extension of this LRC model37 of
the form

f xc
dyn�q� = −

� + �	2

q2 �11�

leads to remarkable improvements for optical spectra of large
gap systems with respect to calculations where the kernel is

CLUSTER-SURFACE AND CLUSTER-CLUSTER… PHYSICAL REVIEW B 78, 035333 �2008�

035333-3



imposed to be static. Moreover, the dynamical approach was
proved to be valid also for energies in the range of plasmons
and for the determination of dielectric constants. Note that
the parameters of both the static and the dynamical models
can be related to physical quantities, such as the experimen-
tal dielectric constant and the plasmon frequency.

In this work, we calculated the dielectric functions at
imaginary frequency using the computer code DP,38 an ab
initio linear-response, plane-wave, TDDFT code. Despite the
enormous amount of studies concerning the accuracy of dif-
ferent approximations for the xc kernel for solids, it is not a
priori clear which approximation is more suitable when one
wants to work at imaginary frequencies. In order to clarify
this aspect, we tested several approximations for the xc ker-
nel.

III. CALCULATIONS

A. van der Waals interactions between silicon clusters

We start our discussion by the calculation of C6 between
the silicon clusters. The clusters were cut from bulk silicon
and then saturated with hydrogens along the tetrahedral di-
rection of the surface atoms. The geometries were optimized
with the computer code SIESTA,39 employing norm-
conserving pseudopotentials, a double � with polarization ba-
sis set, and the Perdew-Burke-Ernzerhof �PBE�
parametrization40 for the xc potential.

From the optimized geometries, we then obtained the
electric polarizability within TDDFT using the Sternheimer
equation,25 as implemented in the computer code OCTOPUS.28

The electron-ion interaction was described through norm-
conserving pseudopotentials41 and the local-density approxi-
mation �LDA�42 was employed in the adiabatic approxima-
tion for the xc potential. It is known that the LDA provides
reliable results for semiconducting clusters;43 Furthermore,
from previous experience with optical spectra calculations,44

we know that these results will not change significantly with
the use of the more sophisticated generalized gradient ap-
proximations �GGAs�. The equations, in this code, are rep-
resented in a real-space regular grid, whose spacing is chosen
to be 0.275 Å. The simulation box is constructed by joining
spheres of radius 4.5 Å, centered around each atom. The
integrals in Eqs. �2� and �5� were performed with a Gauss-
Legendre quadrature using six frequency values. With these
parameters, we estimate the accuracy of our numerical cal-
culations to better than 5%.

In Fig. 1 we show our results for the C6 Hamaker constant
between silicon clusters. As the value of C6 scales with the
product of the atoms in cluster A �NSi

A � and in cluster B �NSi
B �,

we divided the Hamaker constant by NSi
A NSi

B to eliminate this
dependence. We show both constants between two identical
clusters �homomolecular—as red �dark gray� squares, also
presented in Table I� and between different clusters
�heteromolecular—orange �light gray� dots�. We see that the
largest C6 per atom squared comes from the interaction be-
tween two SiH4 clusters, and then the values decrease rapidly
until slightly above 220 a.u., where it saturates. The few
clusters that fall far from the line are the most asymmetric,
for which a description in terms of the average of the dipole

polarizability tensor is not necessarily as good.
The polarizability at imaginary frequencies can be mod-

eled in the London approximation by introducing two adjust-
able parameters: the static polarizability ��0� and one effec-
tive frequency 	1,

��iu� =
��0�

1 + �u/	1�2 . �12�

If we insert Eq. �12� in Eq. �2� we obtain a simplified ex-
pression for the homomolecular Hamaker constant in terms
of these parameters,

C6 =
3	1

4
�2�0� . �13�

As we have calculated both C6 and ��0� within TDLDA, it is
easy to extract 	1 from Eq. �13�. The resulting effective fre-
quencies are plotted in Fig. 2, together with the calculated
static polarizabilities per number of Si atoms. We can ob-
serve that 	1 decreases with the number of Si atoms, but the
dependence on the size of the cluster is rather weak, except
for the singular case of the smallest aggregates.

B. van der Waals interactions between silicon clusters and
dielectric surfaces

Next, we consider the case of a silicon cluster in proxim-
ity of a surface of Si or SiC in the zinc-blende phase. In this
case we want to calculate C3 coefficients, which are deter-
mined both by the dynamical polarizability of the cluster and
the dielectric function of the bulk crystal.

The ground-state calculations for the bulk crystals were
performed using the plane-wave code ABINIT �Ref. 45� with
norm-conserving Hamann pseudopotentials46 for Si and C.
We used cutoff energies for the plane-wave basis of 12.5 Ha
for Si and 30 Ha for SiC. The unit cell was relaxed within the
LDA approximation, yielding lattice parameters with an er-
ror smaller than 3%. The Kohn-Sham energies and wave
functions yielded by ground-state calculations were em-
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FIG. 1. �Color online� C6
AB Hamaker constants as a function of

the square root of the product of silicon atoms in clusters A and B.
As C6

AB scales basically with the product between the number of
�silicon� atoms in A and B, we plot the Hamaker constants divided
by this number. Values of C6

AB when A and B are the same cluster
are plotted as red �dark gray� squares, otherwise they are plotted as
orange �light gray� dots.
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ployed to calculate dielectric functions at imaginary frequen-
cies using the code DP.38 For the response calculations a
shifted k-point grid of 256 points was used both for Si and

SiC. More detailed information on the numerics and conver-
gence issues can be found in Ref. 36.

As discussed before, previous tests on the effect of differ-
ent approximations for the xc potential demonstrate that the
dynamical polarizability of the hydrogenated Si clusters is
accurately described within the TDLDA, and therefore the
C6 coefficients are not going to change by more than 5% by
using different approximations. We decide thus to focus on
the effect of different models for the xc kernel in the calcu-
lation of C3.

In Figs. 3 and 4 we can compare C3 coefficients for Si
clusters on a Si surface and Si clusters on a SiC surface,
respectively. We present results obtained within the RPA
�violet upright triangles� and the TDLDA �beige inverted tri-
angles� using the static LRC kernel �blue diamonds� and the
dynamical LRC kernel �green crosses�. Note that, in the case
of the RPA and the TDLDA calculations, we used the Kohn-
Sham band structure to build �0, while the GW quasiparticle

TABLE I. Values for the static polarizability ��0� and for the Hamaker C6 coefficient. We show both the calculated values with TDDFT
as well as the values obtained using a bond polarization model �BPM�, effective-medium theory �EMT�, and the respective percent errors.

��0�
10−2 C6
10−4 �C6 /C6 �%�
DFT BPM EMT DFT BPM EMT BPM EMT

SiH4 0.349 0.422 0.337 0.0386 0.0458 0.0340 19 −11

Si2H6 0.678 0.768 0.632 0.136 0.151 0.119 11 −9

Si5H12 1.71 1.80 1.52 0.806 0.836 0.686 4 −15

Si8H18 2.71 2.84 2.40 2.01 2.07 1.72 3 −14

Si10H16 3.12 3.30 2.86 2.68 2.80 2.45 4 −9

Si17H36 5.79 5.95 5.05 8.97 9.09 7.62 1 −15

Si20H30 6.36 6.52 5.68 10.8 10.9 9.64 1 −10

Si22H40 7.47 7.44 6.40 14.5 14.2 12.23 −2 −16

Si32H42 10.0 10.2 8.96 26.5 26.7 24.0 1 −10

Si35H36 10.7 10.8 9.59 29.9 29.8 27.49 −0.3 −8

Si38H42 11.6 11.8 10.5 35.5 35.9 32.8 1 −8

Si47H60 14.9 14.9 13.1 57.6 57.2 51.5 −1 −11

Si56H66 17.6 17.6 15.5 80.0 79.3 72.0 −1 −10

Si66H64 19.9 20.2 18.0 103 105 96.8 2 −6

Si71H84 22.4 22.3 19.7 128 128 116 0 −10

Si74H78 22.8 22.9 20.3 134 134 123 0 −8

Si82H72 24.6 24.8 22.2 156 158 147 1 −6

Si86H78 26.1 26.1 23.4 175 175 163 0 −7

Si87H76 26.2 26.3 23.6 177 177 166 0 −6

Si99H100 30.5 30.4 27.1 238 238 219 0 −8

Si106H120 33.8 33.1 29.3 289 281 256 −3 −11

Si116H102 34.9 35.1 31.4 314 316 295 1 −6

Si123H100 36.8 36.9 33.2 348 349 328 0.3 −6

Si130H98 38.4 38.6 34.9 381 384 363 1 −5

Si136H110 40.7 40.7 36.6 425 426 401 0.2 −6

Si136H120 40.9 41.1 36.9 431 434 406 1 −6

Si147H100 43.5 43.3 39.2 484 481 459 −1 −5

Si159H124 47.2 47.4 42.7 573 578 546 1 −5

Si166H122 49.6 49.2 44.5 627 623 590 −1 −6

Si172H120 50.8 50.8 45.9 661 662 630 0.2 −5

0.34
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FIG. 2. �Color online� London effective frequency 	1, blue
�dark gray� crosses, and static polarizabilities per atom, red �light
gray� squares, for the silicon clusters under study as a function of
the number of silicon atoms.
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states are used when the static or dynamical LRC kernels are
employed �see Refs. 36 and 37 for details�. In Si and SiC the
GW corrections to the band structures are essentially equiva-
lent to a rigid shift of the conduction states, thus replacing
KS energies with quasiparticle energies leads to a rigid shift
of the absorption spectrum toward higher energies. We also
plotted in Figs. 3 and 4 the values of C3 obtained using
simple models �red squares� for both the dynamical polariz-
ability of the cluster and the dielectric function of the crystal
at imaginary frequencies. We will discuss these analytical
models and the quality of their results in Sec. IV. The peaks
of C3 as a function of the number of Si atoms occur for
higher polarizable clusters. The oscillations of the polariz-
abilities in turn exactly correlate with the binding energy,
with largest polarizabilities corresponding to the most stable
clusters.

For the interaction of Si clusters on either a Si or a SiC
surface, all the approximations used for the xc kernel give
curves with very similar trends and a dispersion of the values
which is smaller than 10%. This finding reflects the fact that
the dielectric function at imaginary frequency is a very
smooth and well behaved curve and therefore fairly simple to

reproduce; it starts at the value of the static dielectric con-
stant at iu=0 and then decreases monotonically to its
asymptotic limit of one �see Figs. 5 and 6�.

Dielectric constants in the imaginary frequency axis can
be obtained experimentally by performing a Kramers-Kronig
transformation of the values obtained in the real axis,

�M�iu� = 1 +
2

�
�

0

�

d	
	Im��M�	��

	2 + u2 �14�

as long as the experimental absorption spectra has been mea-
sured on a large enough spectral range. We include in Fig. 5
the experimental curve for Si �Ref. 17� for comparison. The
curve calculated with the dynamical LRC approximation is
exactly superposed to the experimental curve. In fact, this is
the only approximation that yields a good dielectric constant,
which fixes the interception with the y axis and an overall
good shape of the absorption spectrum over a large spectral
range.37

It is interesting to note that the static LRC results are
worse than even the RPA curve, being overestimated over the
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FIG. 3. �Color online� van der Waals C3 coefficients between
silicon nanoclusters and a silicon surface. The C3 coefficients were
divided by the number of silicon atoms in the cluster. The different
curves were calculated using different approximations for the di-
electric constant of the bulk crystal at imaginary frequencies �see
the text for details�.
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Eq. �14�.

1

2

3

4

5

6

7

8

0.1 1

ε(
iu

)

ω (a.u.)

RPA
TDLDA

α/q2

α + β ω2/q2

FIG. 6. �Color online� Dielectric function of SiC along the
imaginary axis as a function of the frequency in a logarithmic scale.
We compare results obtained within different approximations for
the xc kernels �Ref. 17�.

BOTTI et al. PHYSICAL REVIEW B 78, 035333 �2008�

035333-6



whole frequency range. In the RPA, there is a “fortuitous”
compensation of errors �the error due to the too high dielec-
tric constant is balanced by the shift of the spectral weight to
lower energies due to the DFT-LDA underestimation of the
absorption edge�. The TDLDA curve is the one that lays
further from the dynamical LRC solution at lower frequen-
cies due to the even higher dielectric constant, but it greatly
improves for u�0.1, thanks to the same compensation of
errors already observed for the RPA calculation.

The same conclusions can be obtained for SiC �see Fig.
6�. In this case, we do not have access to experimental re-
sults, but it is reasonable to expect that the dynamical LRC
approximation will yield the most accurate result overall.
The static LRC results again show a consistent overestima-
tion of the dielectric function, while the RPA curve is the
closest to the dynamical LRC result.

In the light of this analysis, one can interpret the results
for the C3 coefficients. First of all, the dynamical LRC kernel
is expected to work very well. Outside the limits of validity
of the dynamical LRC model �large gap insulators, strongly
bound excitons� only a calculation for the bulk crystal based
on the solution of the BSE �or, equivalently, based on the
fully ab initio Bethe-Salpeter derived kernel� can guarantee
the quality of the C3 coefficients. This implies necessarily
larger computational costs. Perhaps surprisingly, the RPA
and TDLDA appear to be good approximations to evaluate
C3, despite their well-known deficiencies in the calculation
of optical-absorption spectra. This is not necessarily true for
every system, but it is probably true provided that the calcu-
lated dielectric function at zero frequency is larger than the
experimental one. In this case, in fact, we can expect the �at
least partial� cancellation of error between the too high start-
ing point of the curve ��iu� and its too fast decay to one as a
consequence of the shift of the spectral weight to lower en-
ergies. One should be very careful not to use the static LRC
approximation for the kernel despite the fact that it gives an
absorption spectrum in overall agreement with the experi-
ment. This is due to the fact that the van der Waals coeffi-
cients are very sensitive to the value of the dielectric con-
stant.

IV. MODELS

Our proposed ab initio techniques are quite efficient and
allow the calculation of van der Waals coefficients for sys-
tems with �300 atoms, even in relatively modest computer
systems. Moreover, the crystals of Si and SiC considered
here contain only two atoms per unit cell and allow very fast
calculations. Nevertheless, a full ab initio study of dispersion
interactions of large nanostructures/biological molecules on
complex surfaces can become a computationally demanding
task. Therefore, it is desirable to design accurate model van
der Waals potentials, based on ab initio calculations, to be
used for these calculations, where a number of atoms of the
order of 1000 and even larger can be easily attained. Two
problems need to be addressed: �i� how to model the dy-
namic polarizability at imaginary frequency of the nano-
object and �ii� how to model the dielectric function at imagi-
nary frequency of the solid.

A. Model for the dielectric function

Let us start by the modeling of the semiconductor or in-
sulator surface. We have seen that the simplest expression for
the longitudinal dielectric function can be derived by apply-
ing Fermi’s golden rule and assuming the case of a �nearly�
homogeneous material,

��q,	� = 1 +
8�

q2

1

V
�
��

�	���eiq·r���
�2

	� − 	� − 	 − i�
�f�	�� − f�	��� .

�15�

We have observed in Sec. III that the RPA approximation
gives a rather good dielectric function at imaginary fre-
quency, thanks to a compensation of errors. It is thus reason-
able to start from this simple approximation to design an
analytical model. A crude approximation consists in replac-
ing the energy differences in Eq. �15� with some average
excitation energy 	av. By exploiting the sum rules and the
asymptotic behavior of �M�	�, one gets in the optical limit
�q→0�,47

�M�	� = 1 −
	p

2

	2 − 	av
2 + i�	

, � → 0+. �16�

Equation �16� has the same form as the Lorentz dielectric
function of bound charged carriers with frequency 	av. This
model predicts for the static dielectric constant

�M�0� = 1 +
	p

2

	av
2 . �17�

This equation can be used together with the value of the
plasma frequency 	p=4�Nel /V to estimate 	av. In this ap-
proximation one only needs to fix two parameters that are
easily accessible from experiments, the static dielectric con-
stant and the volume of the unit cell. At imaginary frequen-
cies an analogous expression can be derived as a function of
the same parameters,
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FIG. 7. �Color online� Dielectric function of Si and SiC along
the imaginary axis: the model function is compared with the curve
obtained using the LRC dynamical approximation for the xc kernel,
which gives the best agreement with the experiment.
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�M�iu� = 1 +
	p

2

	av
2 + u2 . �18�

We remind that �M�iu� is a real function. The resulting model
dielectric function is plotted in Fig. 7 for both Si and SiC,
together with the best theoretical curve �the one obtained
using the dynamical LRC model for the xc kernel� and the
experimental curve for Si. The model function is substan-
tially worse than the calculated curves, even with respect to
the RPA calculations.

B. Models for the cluster dynamical polarizabilities

For the atomic polarizabilities at imaginary frequency
��iu� it is convenient to use the already mentioned London
approximation �Eq. �12��. In that case, two parameters for
every cluster have to be fixed: its static polarizability ��0�
and the energy of an effective frequency 	1. Of course, one
does not want to define a different set of parameters for
every cluster, but only two parameters for all possible clus-
ters of a fixed species. In the case of a larger molecule or a
cluster, the static polarizability can be estimated by making
use of the bond polarization model �BPM�,48,49 as suggested
by Jiemchooroj et al.50 In this model, the total polarizability
is obtained summing over the contributions from the indi-
vidual polarizable entities: the covalent bonds. In our case
there are only two kinds of bonds, Si-Si and Si-H, and we
can write the static polarizability as

�i�0� = ni
Si-Si�Si-Si + ni

Si-H�Si-H, �19�

where ni
Si-Si and ni

Si-H are the number of Si-Si and Si-H
bonds, respectively, of the cluster i. Here we have indicated
with �Si-Si and �Si-H the contributions to the polarizability
due to the Si-Si and the Si-H bonds, respectively. Upon sub-
stitution in integral �2�, the London model gives for a homo-
molecular Hamaker constant expression �13�, and for the het-
eromolecular Hamaker constant,

C6
ij = 3

	1
i 	1

j

2�	1
i + 	1

j �
�i�0�� j�0� , �20�

Where Eq. �19� gives the values of �i�0�. If we perform a set
of ab initio calculations of C6

ii and �i�0� for small-medium
size clusters, we can extract 	1

i from Eq. �13� and the param-
eters �Si-Si and �Si-H by fitting the theoretical curve for the
static polarizability with Eq. �19�.

The small dispersion of values for 	1
i in Fig. 2 suggests

that it is possible to determine a single average frequency
	̄1=0.343 Ha for all clusters. For the small nanocrystals
with less than ten Si atoms this approximation is not very
precise, but we are interested in getting information on the
interaction of larger systems, which cannot be easily studied
by ab initio techniques. The parameters �Si-Si and �Si-H are
fixed by fitting Eq. �19� to the curve for the static polariz-
ability calculated within the TDLDA �see Fig. 2�. The out-
comes are the values �Si-Si=13.41 a.u. and �Si-H
=10.56 a.u. In Table I we can verify the excellent agreement
�����0���1% for all the clusters, excluding the smallest
ones� between the static polarizabilities calculated using

TDLDA and the additivity model for the nanocrystals. The
same agreement is conserved for the estimated values of C6;
For the big clusters, the difference with the calculated values
is remarkably small �see Table I�.

A different approach to model the dynamic polarizability
of a nanocrystal is to start from the dielectric function of the
corresponding bulk crystal and apply the effective-medium
theory �EMT�.51 This classical approach is based on the so-
lution of Maxwell’s equations with the assumption that the
dielectric response of each constituent of the system is the
one of the corresponding bulk. This assumption is better jus-
tified when the size of the composing objects is large. In fact,
EMT completely neglects the microscopic scale details, such
as atoms and bonds. In this respect it is complementary to
the additive procedure. However, it handles correctly the
boundary conditions for the Maxwell’s equations at the in-
terfaces, which give very important contributions to the di-
electric response through the crystal local-field effects. Our
clusters can be considered as a sphere of Si in vacuum with
a filling factor f that goes to zero. The Maxwell-Garnett
expression51 yields in this specific case,

Im���	�� =
− 9Vs

4�
Im
 1

�M
Si�	� + 2

� , �21�

where �M
Si is the complex dielectric function of bulk silicon

and where Vs is the volume of the spherical cluster. By ap-
plying the analog of the Laplace transformation �14� to the
dynamical polarizability at real frequencies and using once
again the single-oscillator model �16� for the dielectric func-
tion of bulk Si, we obtain for the dynamical polarizability at
imaginary frequencies,

��iu� =
Vs

4�

	p
2

u2 + 	av
2 + 	p

2/3
. �22�

This expression can be rewritten in the same form as the
London model by imposing

��0� =
Vs

4�

	p
2

	av
2 + 	p

2/3
�23�

and

	̄1 = �	av
2 + 	p

2/3. �24�

With respect to the model for the dielectric function of the
crystal we have here an extra parameter to be estimated: the
volume of the spherical cluster. In the limit of a very large
cluster, we can assume that the volume per Si atom is the
same as in the bulk crystal. To obtain better results for small-
medium sized clusters it is necessary to include the contri-
bution to the volume due to the hydrogen atoms at the sur-
face �considering a Si-H bond distance of about 1.5 Å, we
can assume a volume of about 11.4 a.u./hydrogen atom�. The
value of 	̄1 is 0.4 Ha, which is 20% larger than 	̄1 evaluated
in the BPM. The values of ��0�, on the other hand, are sys-
tematically smaller than their counterparts in the BPM. As a
result, C6 coefficients are underestimated by about 5% for
the larger clusters and up to 10%–15% for the smaller ones.
The nontrivial advantage of this second approach is the fact
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that no ab initio calculation needs to be performed to fit ��0�
and 	1.

C. Modeled C3 coefficients

Finally, we calculated the C3 coefficients both for Si
nanocrystals on Si surfaces and on SiC surfaces combining
the single-oscillator model for the surface the bond polariza-
tion model for the nanocrystal. The curves obtained are plot-
ted in Figs. 3 and 4 where they can be compared with the
results of the ab initio calculations. The model calculations
are rigidly shifted to higher values by about 5% for Si and
7% for SiC �when compared with the dynamical LRC
model�. Curiously, they almost overlap with the results ob-
tained using the LRC xc kernel for the determination of the
dielectric function. This can be understood by inspecting Fig.
7; the error is likely to be entirely due to the insufficiently
accurate description of the dielectric function of the bulk
material.

V. CONCLUSIONS

We have demonstrated how the leading terms of the van
der Waals forces acting between nanostructures and between
nanostructures and nonmetallic surfaces can be accurately
and inexpensively computed from first principles. The key
ingredients can be reliably obtained with state-of-the-art the-
oretical schemes and computational procedures. The dynami-
cal polarizabilities of large nanostructures at imaginary fre-
quencies, for example, can be safely computed with the
Sternheimer reformulation25 of time-dependent density-
functional theory. Regarding the other key ingredient neces-
sary to obtain the cluster-surface interaction, the macroscopic
dielectric constant, it can also be computed by making use of
TDDFT. In this case, special care has to be taken with the
choice of the xc kernel. We have found that a particularly
simple and reliable scheme is to make use of the dynamical

LRC kernel.37 However, if the bulk to be studied lies outside
the limits of validity of the dynamical LRC model �large gap
insulators, systems with strongly bound excitons�, one prob-
ably has to resort to the full solution of the Bethe-Salpeter
equation �or, equivalently, to a TDDFT calculation based on
a kernel derived from the Bethe-Salpeter equation�.34 This
necessarily implies larger computational costs.

We also suggest some simplified models that should sup-
ply reasonable estimates for the van der Waals coefficients
for those cases in which first-principles calculations are out
of range. We have found that modeling the bulk dielectric
function can lead to a substantial error ��10%�. However,
using a bond polarization model or the effective-medium
theory for the nanostructure dynamical polarizability yields
very precise results, especially for large systems. This opens
the way to the simulation of the van der Waals interaction for
large nanocrystals.
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