2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1997

Fundamentals of Time-Dependent Density Functional Theory

Authors: M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, and A. Rubio (Eds.)

Ref.: Lecture Notes in Physics, Vol. 837 (Springer, Berlin) (2012)

Abstract: There have been many significant advances in time-dependent density functional theory over recent years, both in enlightening the fundamental theoretical basis of the theory, as well as in computational algorithms and applications. This book, as successor to the highly successful volume Time-Dependent Density Functional Theory (Lect. Notes Phys. 706, 2006) brings together for the first time all recent developments in a systematic and coherent way.

First, a thorough pedagogical presentation of the fundamental theory is given, clarifying aspects of the original proofs and theorems, as well as presenting fresh developments that extend the theory into new realms—such as alternative proofs of the original Runge-Gross theorem, open quantum systems, and dispersion forces to name but a few. Next, all of the basic concepts are introduced sequentially and building in complexity, eventually reaching the level of open problems of interest. Contemporary applications of the theory are discussed, from real-time coupled-electron-ion dynamics, to excited-state dynamics and molecular transport. Last but not least, the authors introduce and review recent advances in computational implementation, including massively parallel architectures and graphical processing units. Special care has been taken in editing this volume as a multi-author textbook, following a coherent line of thought, and making all the relevant connections between chapters and concepts consistent throughout. As such it will prove to be the text of reference in this field, both for beginners as well as expert researchers and lecturers teaching advanced quantum mechanical methods to model complex physical systems, from molecules to nanostructures, from biocomplexes to surfaces, solids and liquids.

Citations: 266 (Google scholar)

DOI: 10.1007/978-3-642-23518-4

URL: www.springer.com



	doi = {10.1007/978-3-642-23518-4},
	url = {https://doi.org/10.1007%2F978-3-642-23518-4},
	year = 2012,
	publisher = {Springer Berlin Heidelberg},
	editor = {Miguel A.L. Marques and Neepa T. Maitra and Fernando M.S. Nogueira and E.K.U. Gross and Angel Rubio},
	title = {Fundamentals of Time-Dependent Density Functional Theory}