Time-dependent electron localization function
[Phys. Rev. A (Rap. Comm.) 71, 10501 (2005)]

Content

0 Overview

All ELF images shown here have either a isosurface or a contour line at ELF = 0.8 and use this colour scheme. For the density the same colour scheme has been applied, with the exception that n(rt) = 0.4 equals the highest value (white), values that are higher are shown in black. In the logarithmic density plot, the same colour scheme as for the ELF has been used, i.e. the shown density is calculated as n'(r,  t) = log (1 + n(rt))/log 2.

Note that the bonds are drawn based only on the distance between the atoms and are therefore not always physically reasonable.

File sizes: The .png files are between 3 kB and 9 kB, the .mpeg files between 2 MB and 18 MB.

1 Excitation of ethyne (actylene) by a laser

1.1 E0 = 3 eV/Å with ν = 17.15 eV

The laser has a maximal intensity of I0 = 1.19×1014 W·cm-2 (E0 = 3 eV/Å) and a frequency of ν = 17.15 eV = 4146 THz ⇔ λ = 72.3 nm = 723 Å.

1.2 E0 = 0.5 eV/Å with ν = 17.15 eV

The laser has a maximal intensity of I0 = 3.318×1013 W·cm-2 (E0 = 0.5 eV/Å) and a frequency of ν = 17.15 eV = 4146 THz ⇔ λ = 72.3 nm = 723 Å.

1.3 E0 = 3 eV/Å with ν = 13.35 eV

The laser has a maximal intensity of I0 = 1.19×1014 W·cm-2 (E0 = 3 eV/Å) and a frequency of ν = 13.35 eV = 3010 THz ⇔ λ = 99.6 nm = 996 Å.

1.4 E0 = 0.5 eV/Å with ν = 13.35 eV

The laser has a maximal intensity of I0 = 3.318×1013 W·cm-2 (E0 = 0.5 eV/Å) and a frequency of ν = 13.35 eV = 3010 THz ⇔ λ = 99.6 nm = 996 Å.

1.5 E0 = 3 eV/Å with ν = 9.55 eV

The laser has a maximal intensity of I0 = 1.19×1014 W·cm-2 (E0 = 3 eV/Å) and a frequency of ν = 9.55 eV = 2309 THz ⇔ λ = 129.8 nm = 1298 Å.

1.6 E0 = 0.5 eV/Å with ν = 9.55 eV

The laser has a maximal intensity of I0 = 3.318×1013 W·cm-2 (E0 = 0.5 eV/Å) and a frequency of ν = 9.55 eV = 2309 THz ⇔ λ = 129.8 nm = 1298 Å.

2 Scattering of a proton by ethene (ethylene)

Time-dependent ELF for the scattering of a fast, non-relativistic proton by ethene.

2.1 Proton against a carbon

The proton has the velocity v = 1.02×105 m/s (kinetic energy Ekin = 2 keV).

2.2 Proton against a hydrogen

The proton has the velocity v = 3.8×105 m/s (kinetic energy Ekin = 3 keV).

2.2 Proton through the π bond

301 keV

The proton has the velocity v = 7.6×106 m/s (kinetic energy Ekin = 301 keV).

2 keV

The proton has the velocity v = 6.1×105 m/s (kinetic energy Ekin = 2 keV).

482 eV

The proton has the velocity v = 3.0×105 m/s (kinetic energy Ekin = 482 keV).

120 eV

The proton has the velocity v = 1.5×105 m/s (kinetic energy Ekin = 120 keV).

3 Excitation of nitrogen (N2) by a laser

3.1 E0 = 5 eV/Å with ν = 12.45 eV

The laser has a maximal intensity of I0 = 3.318×1014 W·cm-2 (E0 = 5 eV/Å) and a frequency of ν = 12.45 eV = 3010 THz ⇔ λ = 99.6 nm = 996 Å.

3.2 E0 = 2 eV/Å with ν = 12.45 eV

The laser has a maximal intensity of I0 = 5.309×1013 W·cm-2 (E0 = 2 eV/Å) and a frequency of ν = 12.45 eV = 3010 THz ⇔ λ = 99.6 nm = 996 Å.

3.3 E0 = 5 eV/Å with ν = 13.65 eV

The laser has a maximal intensity of I0 = 3.318×1014 W·cm-2 (E0 = 5 eV/Å) and a frequency of ν = 13.65 eV = 3301 THz ⇔ λ = 90.8 nm = 908 Å.

3.4 E0 = 2 eV/Å with ν = 13.65 eV

The laser has a maximal intensity of I0 = 5.309×1013 W·cm-2 (E0 = 2 eV/Å) and a frequency of ν = 12.45 eV = 3301 THz ⇔ λ = 90.8 nm = 908 Å.

4 References

© Tobias Burnus, Miguel A. L. Marques, and Eberhard K. U. Gross 2003
Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195 Berlin, Germany